Title: 參數設計之品質損失最小演算法
Algorithms of Minimum Quality Loss in Parameter Design
Authors: 林永發
Yung Fa Lin
唐麗英
Lee Ing Tong
工業工程與管理學系
Keywords: 兩步驟最佳化法;資料轉換;迴歸分析;非線性規劃;two-step optimization procedure;data transformation; regression analysis;nonlinear programming
Issue Date: 1992
Abstract: 田口方法(Taguchi Method)或稱田口式品質工程,自一九八○年後,開始
盛行於美國,並推廣至全世界。它是一種低成本,高效益的品質改善技術
;此種方法的特色在於有效地利用品質損失函數和訊號雜音比 (SN
Ratio)來量測品質;利用線外品質管制(參數設計、直交實驗計劃)來改善
品質;利用線上品質管制來維持品質,是從工程技術觀點出發,達到品質
穩健(Robust)的一套系統性方法。然而近年來,田口方法的一些主要理論
遭到統計學者的批評,相對地,也有一些較具有統計理論基礎的方法被提
出。而事實上田口玄一所提出的兩步驟最佳化法(Two Step
Optimization Procedure),在某些情況下並不適用,而Box-Cox(1988)及
N.Logothetis(1988)等所提出的資料轉換(Data Transformation)方法也
只能解決一部份的問題;本研究旨在針對兩步驟最佳化程序中的一些缺失
,利用迴歸分析及非線性規劃(Nonlinear Programming)技巧來構建一個
能使品質損失最小的演算法,最後並以實例來驗證本研究所構建的演算法
之有效性及可行性。
Taguchi Methods were introduced into the U.S. in 1980 and since
then it has been widespread rapidly. It is a cost- effective
quality improvement technique and a systematic method to get
robust quality from the viewpoint of engineering tech- nology.
Taguchi Methods enable us to evaluate the quality by using the
"Loss Function" and the "Signal-to-Noise" ratio, to improve the
quality by using te off-line quality techniques and to maintain
the quality by using the on-line quality techniques. Recently
some of the underlying principles of Taguchi's ideas have been
criticized and the alternative satistical methods have been
proposed. In fact, Taguchi's two-step opti- mization procedure
in the parameter design is often inefficient if certain
conditions are not satisfied. In this case, the procedure may
not be able to attain the minimum quality loss although its
"Signal-to-Noise" ratio is maximized. Box-Cox data
transformation or β-transformation, suggested by N.Logothetis
(1988), can only solve part of the problems. The objective of
this thesis is to develop algorithms which will attain the min-
imum quality loss by utilizing the techniques of regression
analysis and nonlinear programming. Some examples in the
industry was conducted to verify the effectiveness and the
feasibility of this minimum quality loss algorithm.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT810030028
http://hdl.handle.net/11536/56609
Appears in Collections:Thesis