标题: | 在未知环境中机器人之地形模式探知及其修正和导航 Robotic Terrain Acquisition, Updating and Navigation in an Unknown Environment |
作者: | 黄志明 Chih-Ming Huang 陈稔 Dr. Zen Chen 资讯科学与工程研究所 |
关键字: | 机器人,未知环境,探知,开发,规划,演算法分析,修正;Robot, unknown environment, acquisition, exploration, planning, algorithm analysis, updating |
公开日期: | 1992 |
摘要: | 本论文探讨有关机器人于未知环境中,规划避碰路径的方法。 本文之第 一部份将讨论渐近式地形模式的探知。 经由在布满多边形障碍物的未知 环境中有系统的运动规划, 一个配有感测器的机器人将显示能够渐进地 建立整个地形模式,这个模式将以可视图、可视窗来描述。 这种模式将 逐块区域地建立起来, 且这些已开发的区域彼此间不重叠,如此所求地 域环境将由一群互不重叠的星状多边形拼凑而成, 且其相邻关系可以星 状多边形相邻图来表示。 这种渐近式的开发程序,包含两项基本工作: (1) 区域开发, (2) 合并开发。 有用的定理将为此二工作推导,且这些 工作的演算法也将可得到。 本文也提出两种规划机器人在未知地域环境 中运动的策略建议,并作比较; 这两种策略就是在星状多边形相邻图中 分别作深度优先和宽度优先搜寻以决定如何开发整个未知环境。第二部份 将提出基本演算法来修订地形模式因障碍物之删除、 插入或其他情形所 产生的改变。 透过可视图和可视窗对地形模式的描述,有关地形环境的 改变,只需要部份修订即可。 同时也避免了现存大部份方法的缺点 ---- 全部重新建立。 针对环境中障碍物的删除和插入,一套有系统的修 订步骤也将在本文发展出来。第三部份则在布满多边形障碍物的未知环境 中, 驾驭配有感测器的机器人有系统地运动,使其可渐近地建立一种图 来规划避碰路径。 而一个良好的避碰路径可使机器人从起始点移往目的 地。 对机器人而言,当开发未知环境时, 部份的地形资讯是以星状多边 形的方式取得,为了开发其他未开发区域, 它必须规划一条避碰路径以 便移出目前所在的星状多边形到另一个,这将产生一组星状多边形的组合 。 机器人利用扩张空间方法的辅助将可规划避碰路径来穿越所有遇到的 星状多边形直到获得整个地形环境的资讯或机器人已到达目的地为止。本 文中援用了许多例子来阐述主要的观念。 对于所提的演算法的绩效也将 加以评估,并和其他现存方法作比较。 This dissertation is concerned with approaches to planning collsion-free paths in unknown environment for a mobile robot. In the first part, the problem of incremental terrain acquisition is addressed. Through a systematic planning of movements in an unknown terrain filled with polygonal obstacles, a sensor- based robot is shown to be able to incrementally build the entire terrain model; the model will be described in terms of visibility graph and visibility window. The terrain model is built area by area without any overlapping between explored areas. As a consequence, the terrain is obtained as a tessellation of disjoint star polygons. And the adjacency relations between star polygons are represented by a star polygon adjacency graph (SPAG graph). The incremental exploration process consists of two basic tasks: local exploration and exploration merging. Useful lemmas are derived for these two tasks and, then, the algorithms for the tasks are given. Two strategies for planning robot movements in the unknown terrain environment are suggested and compared. They are the depth-first search and the breadth-first search applied to the SPAG graph. In the second part, the basic algorithms are provided for updating the terrain data model due to obstacle deletion, insertion or other combined effects. Through a data representation in terms of visibility graph and visibility window, only the portion of terrain model that is affected by obstacle change is updated. It avoids reconstructing the terrain model all over again as required in most of existing methods. Systematic steps for terrain updating in the cases of obstacle deletion and obstacle insertion are developed. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT810392005 http://hdl.handle.net/11536/56731 |
显示于类别: | Thesis |