标题: 神经网路之阶层式研究 : 应用于手写中文字识别
The Hierarchical Approach of Neural Network: for Handwritten Chinese Character Recognition
作者: 杨泰宁
Tai-Ning Yang
傅心家
Shin-Chia Fu
资讯科学与工程研究所
关键字: 神经网路; 图型识别; 细线化; 非线性等化;;neural network; pattern recognition; thinning; restricted coloumb energy; nonlinear transformation;
公开日期: 1992
摘要: 本论文主要在于研究如何应用阶层式神经网路的分析技术做手写中文辨识
。本论文之研究以从国小课本中选定六百零五个常用字为范围,并以工研
院研定之手写中文资料库为训练及测试样本进行实验,因测试资料不限定
个人或某团体,故所建立之系统具有广泛性及一般性的辨识能力 。本系
统以传统神经网路模式RCE及我们改良的INNRCE 作为学习比对之模式。系
统在扫描输入文件之后,首先做了切字、非线性正规化、细线化等影像前
处理,接着抽取出二阶特征,二阶特征的优点是能表现笔划的几何特性,
因此作为辨识特征可以提高识别率。因为中文字相当多,所以我们采用两
层的辨识结构,在训练阶段,我们先求出学习集合中每字的中心,并训练
好RCE 神经网路,在测试阶段,取出文字的特征后先与各类别中心求距离
,选出前十个最接近的字作为候选字,这是第一层输出,再以RCE 神经网
路进行辨识,这是第二层输出。实验结果在候选字阶段平均分类正确率
为99.42%,整体识别率以我们改良的INNRCE 最佳,在不驳回时,
达91.23%,有97.10%落入前三名。我们并实验了能辨识任意角度旋转中文
的神经网路共三组,每组各十个字,结果以我们改良的INNRCE 最佳,在
不驳回时,平均识别率约为83%。
The purpose of this thesis is to apply hierarchical analysis
techniques in recognizing handwritten Chinese characters. We
select 605 most often used characters from primary school text
books. The database we used comes from Industrial Technology
Institute. Because the samples in this database are collected
by more than 2600 people, our recognition system could reach a
high generality and independence. We use a traditional RCE
(Restricted Coulomb Energy) and a modified INNRCE (Incremental
Nearest Neighbor RCE) as recognition model. Our recognition
system includes preprocessing , feature extraction, candidate
selection and word recognition. Since there are too many
Chinese characters, we use two level recognition structure to
reduce recognition time complexity. In training stage, we
calculate each character's mean first and then train a RCE
neural network for the 605 characters. In recognition stage, we
calculate the distances between the input pattern and each
character's mean and select the nearest 10 characters as
candidates. These candidates are output of the first level. At
the second level, we use RCE to recognize the designated
character from the candidates. The candidate selection
correction rate is 99.42% .Without rejection, the INNRCE has
overall recognition rate about 91.23% and it reaches 97.10%
within the first 3 candidates. In addition,we also construct
three INNRCE neural networks to recognize rotational
characters. Each network can recognize ten characters. Without
rejection, the average recognition rate is about 83 %.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT810392030
http://hdl.handle.net/11536/56759
显示于类别:Thesis