标题: | 关于射影、仿射两型关联结构之研究 On Incidence Structures of Projective Type and Affine Type |
作者: | 傅东山 Fu, Tung-Shan 黄大原 Huang, Tayuan 应用数学系所 |
关键字: | 距离正则图形,双线性型图,交错型图,类半对称设计;distance-regular graphs, Grassmann graphs, bilinear forms graphs |
公开日期: | 1992 |
摘要: | 本论文讨论下列四族距离正则图形及其衍生之关联结构(incidence structures):Grassmann图,双线性型图(bilinear forms graphs),半 对偶极图(half dual polar graphs),交错型图(alternating forms graphs)。由于其极大点团(maximal cliques)具有射影空间(projective spaces)或仿射空间(affine spaces)的结构,上述四族图形及其关联结 I. 利用A. Neumaiern所提出之古典参数(classical parameters)整合 Grassmann图Jq(n,d)与双线性型图Hq(n,d)于同一模式基础上予以刻划。 II. 除探讨半对偶极图Dn,n(q)与交错型图Alt(n,q)之几何性质外,特别 针对 n=4 (即直径为 2)的情形予以一致性之刻划。 III. 我们提出类半 对称设计(Quasi semisymmetric designs)之概念以描述上述四族图形的 几何结构,并引进下列几何条件以探讨参数之相关性质: (*)-条件: 若B1,B2,B3为含有两个以上共同交点之相异区组,则B1,B2,B3含有μ个共 同交点。 (△)-条件: 任三个两两相连的点至少包含在一个共同区组内 。 Cameron & Drake 已完成参数μ=λ的情形。我们考虑参数μ=λ-1 的情形,并刻划满足(*)和(△)条件的设计。 In this thesis, we study the following four classes of distance- regular graphs and their associated incidence structures: Grassmann graphs J_q(n,d), bilinear forms graphs H_q(n,d), half dual polar graphs D_{n,n}(q), and alternating forms graphs Alt( n,q). The associated incidence structures of the distance- regular graphs mentioned above are called of projective type or affine type depending on their maximal cliques being projective spaces or affine spaces. The main results of this thesis are briefly described as follows: I. We give a unified characterization of the Grassmann graphs J_q(n,d) and the bilinear forms graphs H_q(n,d) as the distance-regular graphs with classical parameters (in the sence of Neumaier) and some extra conditions. II. In addition to the geometric properties of the half dual polar graphs D_{n,n}(q) and the alternating forms graphs, Alt(n,q), we give a unified characterization of D_{4,4}(q) and Alt(4,q) as the strongly regular graphs with classical parameters and some extra conditions. III. We propose the notion of quasi semisymmetric designs (QSSD) as a framework. In particular, we impose the following two extremal conditions on QSSD with nexus and parameters (v,k, [.lambda.],[. mu.]): (*)-condition: if B1, B2, B3 are three distinct blocks with |B1 .intersetion. B2 .intersection. B3| .gtoreq. 2, then then |B1. intersection. B2. intersection. B3| .gtoreq. .mu. (.DELTA.)-condition: any three distinct pairwise collinear points are in at least one common block. Two classes of QSSD with nexus, i.e., QSSD(v,k,[.lambda.], [.mu.]) with .mu.=. lambda. and .mu.=.lambda.-1, satisfying the above extremal conditions are classified. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT810507001 http://hdl.handle.net/11536/57100 |
显示于类别: | Thesis |