Title: 某些擬線性橢圓型問題其強解的存在性
Existence of Strong Solutions for Some Quasilinear Elliptic Problem
Authors: 蔡瓊萩
Tsai,Chiung-chiou
郭滄海
Kao,Tsang-Hai
應用數學系所
Keywords: 擬線性; 橢圓型; 強解; 特徵值問題;quasilinear;elliptic;strong solution;eigenvalue problem
Issue Date: 1992
Abstract: 令.OMEGA.為一個在■上的有界集合,而且其邊界.prtl..OMEGA. .in.■.
我們研究底下這個擬線性橢圓問題:■其中■.in.■,.lgvert.g(x,r,.
xi.).lgvert..ltorsim.h.(.lgvert. r.lgvert.)(1+■),0.ltorsim..
theta..ltorsim.2,並且h是個局部有界函數.假設對所有(x,r,.xi.).in..
OMEGA.*R*■,g滿足■此處■和■是非負函數.當0.ltorsim..theta..
ltorsim.,我們可証得在■.intersection.■中u的強解存在性,並且若p>
N/2時■.intersection.■中u的強解皆■有界.接下來我們考慮下列擬線
性橢圓特徵值問題:■其中■.in.■,且g.in.■.那麼對所有p,p.
ltorsim.<.inf.,存在■使得當 0.ltorsim..lambda.<■此特徵值有解u.
in.■.intersection.■.
Let .OMEGA. be a bounded set in ■ with its boundary .prtl..
OMEGA..in.■. We study the following qualinear ellptic problem:
■ where ■.in.■,.lgvert.g(x,r,.xi.).lgvert..ltorsim.h(.
lgvert. r.lgvert.)(1+■),0.ltorsim..theta..ltorsim.2 and h is a
locally bounded function. Suppose that g satisfies the
following condition: g(x,r,.xi.) sign r .ltorsim.■+■.lgvert..
xi..lgvert. for all (x,r,.xi.).in..OMEGA.*R*■where■and■are
nonnegative constants. Whenever 0<.theta.<2,the existence of
strong solutions u.in.■(.OMEGA.).intersection.■(.OMEGA.) is
proved and all the solutions u.in.■(.OMEGA.).intersection.■(.
OMEGA.) are ■ bounded for p>N/2. Consider the following
quasilinear elliptic eigenvalue problem:■ where ■and■. Thus
for each p,1.ltorsim.p<.inf.,there exists a ■>0 such that the
eigenvalue problem has a solution u.in.■.intersection.■
whenever 0.ltorsim..lambda.<■.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT810507011
http://hdl.handle.net/11536/57111
Appears in Collections:Thesis