标题: | 局部对称空间中的最小超曲面 MINIMAL HYPERSURFACES OF A LOCALLY SYMMETRIC SPACE |
作者: | 杨胜能 Sheng-Neng Yang 许 义 容 Yi-Jung Hsu 应用数学系所 |
关键字: | 超曲面;最小浸入;第二基本式;局部对称.;hypersurface ; minimally immersed;second fundamental form; locally symmetric. |
公开日期: | 1992 |
摘要: | 一个n维紧致超曲面最小浸入一个(n+1)维局部对称空间,吾人给予条件 使此浸入之第二基本式的长度平方为常数. Let M be an n-dimensional compact hypersurface which is minimally immersed in an (n+1)-dimensional locally symmetric space N. We give conditions such that the square of the length of the second fundamental form of this immersion is constant. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT810507016 http://hdl.handle.net/11536/57118 |
显示于类别: | Thesis |