标题: 局部对称空间中的最小超曲面
MINIMAL HYPERSURFACES OF A LOCALLY SYMMETRIC SPACE
作者: 杨胜能
Sheng-Neng Yang
许 义 容
Yi-Jung Hsu
应用数学系所
关键字: 超曲面;最小浸入;第二基本式;局部对称.;hypersurface ; minimally immersed;second fundamental form; locally symmetric.
公开日期: 1992
摘要: 一个n维紧致超曲面最小浸入一个(n+1)维局部对称空间,吾人给予条件
使此浸入之第二基本式的长度平方为常数.
Let M be an n-dimensional compact hypersurface which is
minimally immersed in an (n+1)-dimensional locally symmetric
space N. We give conditions such that the square of the length
of the second fundamental form of this immersion is constant.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT810507016
http://hdl.handle.net/11536/57118
显示于类别:Thesis