完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 藍彭聖 | en_US |
| dc.contributor.author | Lan, Pong-Shen | en_US |
| dc.contributor.author | 陳 秋 媛 | en_US |
| dc.contributor.author | Chiuyuan Chen | en_US |
| dc.date.accessioned | 2014-12-12T02:10:59Z | - |
| dc.date.available | 2014-12-12T02:10:59Z | - |
| dc.date.issued | 1992 | en_US |
| dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT810507017 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/57119 | - |
| dc.description.abstract | 本篇論文的主要內容是在討論有向圖上的回饋點集問題. 對沒有點的入度 數或出度數超過2的有向圖和沒有入度數或出度數超過3的平面有向圖而 言, 回饋點集問題已經被證明是NP-complete.在這篇論文裡, 我們將證 明: 對入度數加出度數的總和不超過3的有向圖和沒有入度數或出度數超 過2的平面有向圖( 或雙分平面有向圖 )而言, 回饋點集問題也是NP- complete.我們也將證明: 對沒有點的入度數加出度數的總和超過2的有 向圖和沒有點的入度數加出度數總和超過3的平面有向圖而言, 回饋點集 問題是存在多項式時間的演算法的. This paper deals with the feedback vertex set ( FVS ) problem for various digraphs. It was proved that the FVS problem is NP- complete for general digraphs and remains NP-complete for digraphs having no in-degree or out-degree exceeding 2, and for planar digraphs having no in-degree or out-degree exceeding 3. In this paper, we shall show that the FVS problem remains NP- complete even for digrpahs in which no vertex has total in- degree and out-degree more than 3, for planar (or planar bipartite) digraphs having no in-degree or out-degree exceeding 2. Moreover, we shall also show that the FVS problem is solvable in polynomial time for digraphs in which no vertex has total in-degree and out-degree more than 2, and for planar digraphs in which no vertex total has total in-degree and out- degree more than 3. | zh_TW |
| dc.language.iso | en_US | en_US |
| dc.subject | 回餽, 有向圖, 平面 | zh_TW |
| dc.subject | Feedback, Digraph, planar | en_US |
| dc.title | 有向圖上的回饋點集問題 | zh_TW |
| dc.title | The Feedback Vertex Set Problem for various digraphs | en_US |
| dc.type | Thesis | en_US |
| dc.contributor.department | 應用數學系所 | zh_TW |
| 顯示於類別: | 畢業論文 | |

