Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Chun-Yuanen_US
dc.contributor.authorHsu, Chun-Chinen_US
dc.contributor.authorChen, Mu-Chenen_US
dc.date.accessioned2014-12-08T15:07:16Z-
dc.date.available2014-12-08T15:07:16Z-
dc.date.issued2010-03-03en_US
dc.identifier.issn0888-5885en_US
dc.identifier.urihttp://dx.doi.org/10.1021/ie900521ben_US
dc.identifier.urihttp://hdl.handle.net/11536/5738-
dc.description.abstractThe Tennessee Eastman (TE) process, created by Eastman Chemical Company, is a complex nonlinear process. Many, previous studies focus on the detectability of monitoring a multivariate process by using TE process as an example. Principal component analysis (PCA) is a widely used dimension-reduction tool for monitoring multivariate linear process. Recently, the kernel principal component analysis (KPCA) has emerged as all effective method to tackling the problem of nonlinear data. Nevertheless, the conventional KPCA used the sum of squares of latest observations is the monitoring statistics and hence failed to detect small disturbance of the process. To enhance the delectability of the KPCA-based monitoring method, an adaptive KPCA-based monitoring statistic is proposed in this paper. The basic idea of the proposed method is first adopting the multivariate exponentially moving average to predict the process mean shifts and then combining the estimated mean shifts with the extracted components by KPCA to construct the adaptive monitoring statistic. The efficiency of the proposed monitoring scheme is implemented in a simulated nonlinear system and in the TE process. The experimental results indicate that the proposed method outperforms the traditional PCA and KPCA monitoring schemes.en_US
dc.language.isoen_USen_US
dc.titleAdaptive Kernel Principal Component Analysis (KPCA) for Monitoring Small Disturbances of Nonlinear Processesen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/ie900521ben_US
dc.identifier.journalINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCHen_US
dc.citation.volume49en_US
dc.citation.issue5en_US
dc.citation.spage2254en_US
dc.citation.epage2262en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000274752700034-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. 000274752700034.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.