标题: | 一个新式多重卡曼滤波器在影像还原上的应用 A New Multiple Kalman Filter Approach for Image Restoration |
作者: | 林宗范 Tsung-Fan Lin. 刘启民 Chi-Min Liu 资讯科学与工程研究所 |
关键字: | 影像还原;二维卡曼滤波器;多重卡曼滤波器;空间适应型多重卡曼滤波器;Image Restoration;2-D Kalman Filter;Multiple-Model Kalman Filter;Spatial Adaptive Kalman Filter |
公开日期: | 1993 |
摘要: | 影像还原的目的在于消除影像在录制及传输上遭到破坏的影响。二维卡曼 滤波器(Kalman Filter)在影像还原的处理上较其他方法有着更多的优点 。目前已有数种型式的卡曼滤波器依效率或效果的考量被提出来;其中多 重卡曼滤波器不仅在客观标准上有较好的结果,同时也能达到较佳的主观 视觉品质。它采用了多个不同的影像模式,可依据影像上区域的结构作适 度的调整,因而能保留影像上边缘部份。在本论文中,我们运用空间适应 的概念对多重卡曼滤波器加以延伸,这个新的方法可称为空间适应型的多 种卡曼滤波器。依循这个方向,我们发展了一个新的演算法:将多重卡曼 滤波器中的非边缘平滑模式依据影像上区域统计特性加以调适,并依此修 改影像状态变换及卡曼滤波器的算式。同时为了减低计算复杂度,我们也 发展了两种较快速的演算法。透过实验证实,我们所提出的这三个演算法 不论在主观的影像品质或客观的讯号误差比(SNR)上,都能达到较佳的结 果。 Image restoration is a problem on removing the effect of imperfect recording of images. Two-dimensional Kalman filtering for the image restoration has some advantages with compared to other stochastic filtering techniques. There have been several two dimensional Kalman filtering algorithms proposed for efficiency and performance consideration. The multiple model Kalman filter is the one that achieves not only good subjective but also good objective results. It utilizes the multiple image models which adapt to the local structure of images and then preserves the edge areas. In this thesis, we try to extend the multiple model Kalman filter using the concept of spatial adaptive filtering. The new approach is named spatial adaptive multiple model Kalman filter. Following the approach, a new algorithm is presented to extend the nonedge flat image model for adaptation to the local statistics of images. This new algorithm modifies the state dynamic equation of Kalman filtering. The corresponding Kalman filter equations are derived based on the modified state dynamic equation. Furthermore, to reduce the computation complexity, two fast algorithms for spatial adaptive multiple model Kalman filter are proposed. Experiments have shown the three algorithms have better objective visual quality and better subjective SNR improvement than other algorithms. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT820392010 http://hdl.handle.net/11536/57813 |
显示于类别: | Thesis |