完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Pei-Chunen_US
dc.contributor.authorLee, Kuang-Yaoen_US
dc.contributor.authorLee, Tsung-Juen_US
dc.contributor.authorLee, Yuh-Jyeen_US
dc.contributor.authorHuang, Su-Yunen_US
dc.date.accessioned2014-12-08T15:07:21Z-
dc.date.available2014-12-08T15:07:21Z-
dc.date.issued2010-03-01en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2009.11.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/5799-
dc.description.abstractThe multiclass classification problem is considered and resolved through coding and regression. There are various coding schemes for transforming class labels into response scores. An equivalence notion of coding schemes is developed, and the regression approach is adopted for extracting a low-dimensional discriminant feature subspace. This feature subspace can be a linear subspace of the column span of original input data or kernel-mapped feature data. The classification training and prediction are carried out in this feature subspace using a linear classifier, which lead to a simple and computationally light but yet powerful toolkit for classification. Experimental results, including prediction ability and CPU time comparison with LIBSVM, show that the regression-based approach is a competent alternative for the multiclass problem. (C) 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectKernel mapen_US
dc.subjectMulticlass classificationen_US
dc.subjectOutput codeen_US
dc.subjectRegularizationen_US
dc.subjectSupport vector machineen_US
dc.subjectSupport vector regressionen_US
dc.titleMulticlass support vector classification via coding and regressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2009.11.005en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume73en_US
dc.citation.issue7-9en_US
dc.citation.spage1501en_US
dc.citation.epage1512en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000276481200044-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000276481200044.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。