完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Yun-Fengen_US
dc.contributor.authorShih, Zen-Chungen_US
dc.date.accessioned2014-12-08T15:07:22Z-
dc.date.available2014-12-08T15:07:22Z-
dc.date.issued2010-03-01en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-009-0412-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/5807-
dc.description.abstractIn this paper, we propose a novel nonparametric regression model to generate virtual humans from still images for the applications of next generation environments (NG). This model automatically synthesizes deformed shapes of characters by using kernel regression with elliptic radial basis functions (ERBFs) and locally weighted regression (LOESS). Kernel regression with ERBFs is used for representing the deformed character shapes and creating lively animated talking faces. For preserving patterns within the shapes, LOESS is applied to fit the details with local control. The results show that our method effectively simulates plausible movements for character animation, including body movement simulation, novel views synthesis, and expressive facial animation synchronized with input speech. Therefore, the proposed model is especially suitable for intelligent multimedia applications in virtual humans generation.en_US
dc.language.isoen_USen_US
dc.subjectImage deformationen_US
dc.subjectNonparametric regressionen_US
dc.subjectElliptic radial basis functionsen_US
dc.subjectFunctional approximationen_US
dc.subjectLocally weighted regressionen_US
dc.titleA nonparametric regression model for virtual humans generationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-009-0412-7en_US
dc.identifier.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.citation.volume47en_US
dc.citation.issue1en_US
dc.citation.spage163en_US
dc.citation.epage187en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000274437400010-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000274437400010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。