完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Chun-Chinen_US
dc.contributor.authorChen, Mu-Chenen_US
dc.contributor.authorChen, Long-Shengen_US
dc.date.accessioned2014-12-08T15:07:23Z-
dc.date.available2014-12-08T15:07:23Z-
dc.date.issued2010-03-01en_US
dc.identifier.issn0967-0661en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.conengprac.2009.11.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/5815-
dc.description.abstractA novel process monitoring scheme is proposed to compensate for shortcomings in the conventional independent component analysis (ICA) based monitoring method. The primary idea is first to augment the observed data matrix in order to take the process dynamic into consideration. An outlier rejection rule is then proposed to screen out outliers, in order to better describe the majority of the data. Finally, a rectangular measure is used as a monitoring statistic. The proposed approach is investigated via three cases: a simulation example, the Tennessee Eastman process and a real industrial case. Results indicate that the proposed method is more efficient as compared to alternate methods. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPCAen_US
dc.subjectICAen_US
dc.subjectTennessee Eastman processen_US
dc.subjectTPCen_US
dc.subjectAdjusted outlyingnessen_US
dc.titleA novel process monitoring approach with dynamic independent component analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.conengprac.2009.11.002en_US
dc.identifier.journalCONTROL ENGINEERING PRACTICEen_US
dc.citation.volume18en_US
dc.citation.issue3en_US
dc.citation.spage242en_US
dc.citation.epage253en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000276134000004-
dc.citation.woscount13-
顯示於類別:期刊論文


文件中的檔案:

  1. 000276134000004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。