Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Hsiuyingen_US
dc.date.accessioned2014-12-08T15:07:31Z-
dc.date.available2014-12-08T15:07:31Z-
dc.date.issued2010-02-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2009.07.031en_US
dc.identifier.urihttp://hdl.handle.net/11536/5919-
dc.description.abstractThe methodology for deriving the exact confidence coefficient of some confidence intervals for a binomial proportion is proposed in Wang [2007. Exact confidence coefficients of confidence intervals for a binomial proportion. Statist. Sinica 17, 361-368]. The methodology requires two conditions of confidence intervals: the monotone boundary property and the full coverage property. In this paper, we show that for some confidence intervals of a binomial proportion, the two properties hold for any sample size. Based on results presented in this paper, the procedure in Wang [2007. Exact confidence coefficients of confidence intervals for a binomial proportion. Statist. Sinica 17, 361-368] can be directly used to calculate the exact confidence coefficients of these confidence intervals for any fixed sample size. (C) 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectConfidence coefficienten_US
dc.subjectBinomial distributionen_US
dc.subjectConfidence intervalen_US
dc.subjectCoverage probabilityen_US
dc.subjectThe monotone boundary propertyen_US
dc.subjectThe full coverage propertyen_US
dc.titleThe monotone boundary property and the full coverage property of confidence intervals for a binomial proportionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2009.07.031en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume140en_US
dc.citation.issue2en_US
dc.citation.spage495en_US
dc.citation.epage501en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000272059900014-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000272059900014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.