標題: 國外期貨契約引進、沖險績效衡量與廠商沖險策略之擬定
On Measuring the Hedging Contribution and Hedging Effectiveness and A Study of Hedging Strategy
作者: 盧陽正
Yang-Cheng Lu
張保隆;吳壽山
Pao-Long Chang;Soushan Wu
管理科學系所
關鍵字: 期貨;沖險;沖險績效;重疊分析;共積;誤差修正模型;Futures;Hedging;Hedging Effectiveness;Redundancy Analysis; Cointegration;Error Correction Model
公開日期: 1994
摘要:   本文首先在裁量性沖險學說(discretionary hedging) 選擇性沖險之 學說下,拓展Ederington(1979)、Anderson 和 Danthine(1981)之分析, 探討多種現貨及多種期貨架構下沖險績效評估問題。 第2章從市場之 觀點,探討新期貨契約引進對於風險轉移效果之貢獻,並利用多變量正點 相關分析法,推導期貨契約沖險邊際貢獻之評估指標。針對期貨契約邊際 貢獻之顯著性檢定,本研究利用蒙地卡羅模擬法驗證檢定統計量之抽樣分 配,最後並以實例說明本研究所提出之檢定統計量及其抽樣分配之應用。 本文第2章之研究在於解決新期貨契約引進其風險轉移效果顯著性之檢定 問題;又所提出之檢定統計量及其近似分配,對於多變量分析之研究領域 亦有所增益。 第3章著眼於個別廠商沖險策略績效之評估。在現貨部 位既定的情形下,本章從重疊沖險分析模式,推導出沖險績效評估指標, 並在定理中證明該指標之優越性。此外,本章並比較三種多變量架構下之 沖險模式,說明重疊沖險分析法、正典相關沖險分析法及多變量沖險分析 法之關聯性。第3章之研究解決廠商最適沖險組合之選擇及其沖險績效的 衡量問題,3.3.1 節所提出之定理在多變量重疊分析的領域中亦有所拓展 。 第4章則依據 Franckle(1980)及 Castelino(1990) 所提出的隨時 間而增加之資訊將有助於沖險策略改進的哲學,提出動態現貨與期貨關聯 性模型,在現貨價格與期貨價格共積關係存在的情形下,說明動態誤差修 正模型所透露的價格指引訊息,及其對於最適沖險策略之影響。本章綜合 整理計量經濟學中,時間數列模型實證研究之方法論,歸納出模型估計之 流程以及模型良窳之評判準則,並以 S&P500 指數及 New York 綜合指數 為例,提出動態誤差修正模型之實證。實證結果發現非線性誤差修正沖險 模型優於傳統迴歸沖險模型,同時在模型設定與 out-sample 預測上優 於 Gosh(1993)及 Wahab 和Lashgari (1993)之線性誤差修正沖險模型。 本章提出沖險理論實證模型之估計方法論,同時在實證研究中亦發現經由 此方法論所估得之模型優於以往的模型。 Extending the work of Ederington(1979) and Anderson and Danthine (1981), we examine the problem of hedging multi- assets with multi-futures contracts under discretionary hedging theory. Chapter 2 discuss the measure of hedging contribution through canonical correlation analysis from the market point of view. Upon deriving the hedging effectiveness, a test statistic and its asymptotic distribution is derived through Monte Carlo simulation to measure the significance of the contribution of a new futures contract. In chapter 3, a generalized measure of hedging effective- ness under the multiple spots and multiple futures framework is proposed. It is shown that any affine transformation of futures contracts does not affect the hedging potential. However, affine transformation of spot assets does change the hedging effectiveness. Two other different hedging analysis for the multiple spots and futures framework are also examined, and the redundancy hedging analysis seems to be an excellent one. The short run dynamics and long run equilibrium relation- ship between spots and futures are studied in chapter 4. A dynamic nonlinear error correction mechanism for spot and futures prices under cointegration is proposed to capture the time varying information set. An emperical model obtained from the econometric methodology for S&P500 and New York composite index and index futures has shown the superiority of the proposed procedure.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT830457002
http://hdl.handle.net/11536/59425
顯示於類別:畢業論文