Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Yi-Fan | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Kim, In-Jae | en_US |
dc.contributor.author | Stehr, Eryn | en_US |
dc.contributor.author | Watts, Brendon | en_US |
dc.date.accessioned | 2014-12-08T15:07:34Z | - |
dc.date.available | 2014-12-08T15:07:34Z | - |
dc.date.issued | 2010-01-15 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2009.09.008 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/5963 | - |
dc.description.abstract | For positive integers p, q, r, s and t satisfying rt <= p and st <= q, let G(p, q; r, s; t) be the bipartite graph with partite sets {u(1), ..., u(p)} and {v(1), ..., v(q)} such that u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1)r + 1 <= i <= kr and (k - 1)s + 1 <= j <= ks. In this paper we study the largest eigenvalues of bipartite graphs which are nearly complete. We first compute the largest eigenvalue (and all other eigenvalues) of G(p, q: r, s: t), and then list nearly complete bipartite graphs according to the magnitudes of their largest eigenvalues. These results give an affirmative answer to [1, Conjecture 1.2] when the number of edges of a bipartite graph with partite sets U and V, having vertical bar U vertical bar = p and vertical bar V vertical bar = q for p <= q, is pq - 2. Furthermore, we refine [1, Conjecture 1.2] for the case when the number of edges is at least pq - p + 1. (C) 2009 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Bipartite graph | en_US |
dc.subject | Eigenvector | en_US |
dc.subject | Largest eigenvalue | en_US |
dc.title | On the largest eigenvalues of bipartite graphs which are nearly complete | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2009.09.008 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 432 | en_US |
dc.citation.issue | 2-3 | en_US |
dc.citation.spage | 606 | en_US |
dc.citation.epage | 614 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000272929800014 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.