Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yi-Fanen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorKim, In-Jaeen_US
dc.contributor.authorStehr, Erynen_US
dc.contributor.authorWatts, Brendonen_US
dc.date.accessioned2014-12-08T15:07:34Z-
dc.date.available2014-12-08T15:07:34Z-
dc.date.issued2010-01-15en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2009.09.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/5963-
dc.description.abstractFor positive integers p, q, r, s and t satisfying rt <= p and st <= q, let G(p, q; r, s; t) be the bipartite graph with partite sets {u(1), ..., u(p)} and {v(1), ..., v(q)} such that u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1)r + 1 <= i <= kr and (k - 1)s + 1 <= j <= ks. In this paper we study the largest eigenvalues of bipartite graphs which are nearly complete. We first compute the largest eigenvalue (and all other eigenvalues) of G(p, q: r, s: t), and then list nearly complete bipartite graphs according to the magnitudes of their largest eigenvalues. These results give an affirmative answer to [1, Conjecture 1.2] when the number of edges of a bipartite graph with partite sets U and V, having vertical bar U vertical bar = p and vertical bar V vertical bar = q for p <= q, is pq - 2. Furthermore, we refine [1, Conjecture 1.2] for the case when the number of edges is at least pq - p + 1. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBipartite graphen_US
dc.subjectEigenvectoren_US
dc.subjectLargest eigenvalueen_US
dc.titleOn the largest eigenvalues of bipartite graphs which are nearly completeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2009.09.008en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume432en_US
dc.citation.issue2-3en_US
dc.citation.spage606en_US
dc.citation.epage614en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000272929800014-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000272929800014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.