完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳正斌en_US
dc.contributor.authorChern, Jern Binen_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong Eaoen_US
dc.date.accessioned2014-12-12T02:14:10Z-
dc.date.available2014-12-12T02:14:10Z-
dc.date.issued1994en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT830507013en_US
dc.identifier.urihttp://hdl.handle.net/11536/59642-
dc.description.abstract我們利用連續及分岐理論,運用數值的方法,來描繪出Sine-Gordon 與非線 性Schrodinger之常微分方程其解的圖形.經由圖形,我們能夠對常微分方 程的解有更深入的了解.如:轉彎點,分岔點,...等.同時可以與參考文獻 [1],[10]中的結果相互印證.經由這些結論,我們能夠應用在一般常微分方 程的理論之上. In this thesis, based on the theory of continuation & local bifurcations, we develop numerical codes to sketch the bifurcation diagrams of the Sine-Gordon & nonlinear Schrodinger ODEs. From the bifurcation diagrams, we realize the complicated qualitative behaviors of those ODEs. There exists bifurcation points such as turning points, pitchfork bifurcation points and Hopf bifurcation points. Also it indicates the existence of homoclinic orbits and strange attractors. The codes are shown to be correct by comparing the results with that previous results with that previous results done by [1],[10]. The codes, written in Mathematica, can be applied to general nonlinear ODEs with multi-parameters.zh_TW
dc.language.isoen_USen_US
dc.subject連續,分歧,轉彎點zh_TW
dc.subjectContinuation,Bifurcation,Turning pointen_US
dc.titleSine-Gordon 與非線性 Schrodinger 對常微分方程之分岐現象的計算技巧zh_TW
dc.titleTechniques on Computations of Bifurcation of Sine-Gordon & Nonlinear Schrodinger ODEen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文