Title: Sine-Gordon與非線性Schrodinger有限項切割常微方程之計算性分歧理論
Computational Bifurcations of Sine-Gordon and Nonlinear Shrodinger Finite-Mode Truncations
Authors: 李英麒
Lee,Ying Chi
李榮耀
Lee,Jong Eao
應用數學系所
Keywords: 分歧點;轉彎點;連續法;Bifurcation;Sine-Gordon;Schrodinger
Issue Date: 1994
Abstract: 我們依據參考文獻[10]中的連續法及局部分岐理論,發展出自己的數值方
法,來檢試Sine-Gordon 與非線性Schrodinger之有限項切割常微分方程之
分歧性質,進以完成它們的分歧圖形.我們發現我們所得的結果與參考文獻
[9],[10]中的結果一致.除了標準的數值分析方法之外. 我們採用
Mathematica 應用軟體來分析.
In this thesis, according to the theory of continuation and
local bifurcation [10], we develop our own numerical code to
investigate the bifurcations of finite-mode truncation
nonlinear Schrodinger and Sine-Gordon ODEs. Combining the
theoretic arguments and the numerical computations, we complete
the bifurcation diagrams. Our results are consistent with the
results done by [9], [10]. Besides the standard numerical
analysis, our main computational software is Mathematica. We
test the codes in the Sun-Sparc Workstation.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT830507011
http://hdl.handle.net/11536/59640
Appears in Collections:Thesis