标题: | Sine-Gordon与非线性Schrodinger有限项切割常微方程之计算性分歧理论 Computational Bifurcations of Sine-Gordon and Nonlinear Shrodinger Finite-Mode Truncations |
作者: | 李英麒 Lee,Ying Chi 李荣耀 Lee,Jong Eao 应用数学系所 |
关键字: | 分歧点;转弯点;连续法;Bifurcation;Sine-Gordon;Schrodinger |
公开日期: | 1994 |
摘要: | 我们依据参考文献[10]中的连续法及局部分岐理论,发展出自己的数值方 法,来检试Sine-Gordon 与非线性Schrodinger之有限项切割常微分方程之 分歧性质,进以完成它们的分歧图形.我们发现我们所得的结果与参考文献 [9],[10]中的结果一致.除了标准的数值分析方法之外. 我们采用 Mathematica 应用软体来分析. In this thesis, according to the theory of continuation and local bifurcation [10], we develop our own numerical code to investigate the bifurcations of finite-mode truncation nonlinear Schrodinger and Sine-Gordon ODEs. Combining the theoretic arguments and the numerical computations, we complete the bifurcation diagrams. Our results are consistent with the results done by [9], [10]. Besides the standard numerical analysis, our main computational software is Mathematica. We test the codes in the Sun-Sparc Workstation. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT830507011 http://hdl.handle.net/11536/59640 |
显示于类别: | Thesis |