标题: Sine-Gordon与非线性Schrodinger有限项切割常微方程之计算性分歧理论
Computational Bifurcations of Sine-Gordon and Nonlinear Shrodinger Finite-Mode Truncations
作者: 李英麒
Lee,Ying Chi
李荣耀
Lee,Jong Eao
应用数学系所
关键字: 分歧点;转弯点;连续法;Bifurcation;Sine-Gordon;Schrodinger
公开日期: 1994
摘要: 我们依据参考文献[10]中的连续法及局部分岐理论,发展出自己的数值方
法,来检试Sine-Gordon 与非线性Schrodinger之有限项切割常微分方程之
分歧性质,进以完成它们的分歧图形.我们发现我们所得的结果与参考文献
[9],[10]中的结果一致.除了标准的数值分析方法之外. 我们采用
Mathematica 应用软体来分析.
In this thesis, according to the theory of continuation and
local bifurcation [10], we develop our own numerical code to
investigate the bifurcations of finite-mode truncation
nonlinear Schrodinger and Sine-Gordon ODEs. Combining the
theoretic arguments and the numerical computations, we complete
the bifurcation diagrams. Our results are consistent with the
results done by [9], [10]. Besides the standard numerical
analysis, our main computational software is Mathematica. We
test the codes in the Sun-Sparc Workstation.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT830507011
http://hdl.handle.net/11536/59640
显示于类别:Thesis