标题: 有加强式学习能力之适应性模糊语句解析
Adaptive Fuzzy Language Acquisiton With Reinforcement Learning
作者: 甘名志
Kan, Ming-Chih
林进灯
Lin, Chin-Teng
电控工程研究所
关键字: 模糊神经网路;模糊修饰;Fuzzy Nerual Network;linguistic informaiton
公开日期: 1994
摘要: 本篇论文提出一个具有四层的“适应性模糊语句解析神经网路(Adaptive Fuzzy Language Acquisition Network)”系统,而在此系统中,“模糊神经网路(Fuzzy Neural Network)”将与“适应性语句解析网路(Adaptive Language Acquisition Network)”相互结合。我们简称此网路为”AFLAN”。这个新网路可以藉由与复杂环境的互动(Iteraction)来达到适应性的模糊语句解析,也就是说,它可以将一些带的模糊字眼的自然语句讯息转译成回使用者预期想要的资料,而这个资料含括有“语意上的动作(semantic action)”及针对该动作所做的“言辞上的模糊修饰(Linguistic information)”(譬如说:在“以非常快的速度向前移动”的模糊语句中,‘向前移动’代表着语意上的动作,而‘非常快’则表示言辞上的模糊修饰)。此外,AFLAN有三个的重要的特质:第一,使用者可以任意的输入他想表达的意思,而不受任何语句的限制;而且,这个网路并不要一些像听觉的、韵律学的、文法上的或者是句子组织学上的结构。第二,代表言辞上的模糊修饰程度是经由适应性的学习而得来的,而且我们是以α-level sets形式的模糊集合(fuzzy number)来表示它。第三,此网路具有即时操作时线上学习的能力。
在此论文中,我们也将探讨两种学习形式,一为非线上学习(off-line learning),另一为线上学习(on-line learning)。非线上学习主要是使用在学习用的资料是已知的环境下,而为了完成网路的非线上学习,我们利用“相互资料指导性学习(mutual information supervised learning)”法则来学习语意上的动作,此外还利用“模糊倒传递学习(fuzzy back-propagation learning)”法则来学习言辞上模糊修饰的程度。相对的,线学习主要是使用于在做即时操作时而所使用的资料是在不确知的环境下。在线上学习的学习法则方面我们将之归类为两组,除了上述在非线上学习所提到的两种学习法则外,我们更利用“相互资料加强式学习(mutual information reinforcement learning)”法则来学习语意上的动作及“模糊加强式学习(fuzzy reinforcement learning)”法则来学习语意上的动作及“模糊加强式学习(fuzzy reinforcement learning)”法则来学习言辞上模糊修饰的程度;而这两组学习法则的不同点主要是在评判式讯号(critical signal)的来源不同,前组的讯号是由指导者(supervisor)所提供的,所以这种学习是监督式学习(superuised learning);而后组的加强式讯号是由使用者直接提供,因此我们称呼这种学习方式为加强式学习,而这组学习方使得线上学习更为即时。此外,我们必须在这两组学习法中各选出一适当的法则来做网路的线上学习。
在本篇论文的最后,我们将以所发展的“具模糊命令解析的控制系统”来实际地展现所提的系统之功效。
This thesis proposes a four-layered Adaptive Fuzzy Language Acquisition Network (AFLAN), in which a fuzzy neural network is embedded in an adaptive language acquisition network. The proposed network can adaptively acquire fuzzy language via interactions with a complex environment. More clearly, the network can translate a natural fuzzy language message into the intended information that includes meaningful semantic action and the linguistic information of that action (for example, the phrase" move forward" represents the meaningful semantic action and the phrase" very high" represents the linguistic information in the fuzzy language " Move forward in a very high speed.").The proposed AFLAN has three important characteristics. First, we can make no restrictions whatever on the fuzzy language input which is used to specify the desired information, and the network requires no acoustic, prosodic, grammar and syntactic structure. Second, the linguistic information of an action is learned adaptively and it is represented by fuzzy numbers based on α-level sets. Third, the network can learn during the course of performing the task. The AFLAN can perform off-line as well as on-line learning. For the off-line learning, mutual-information (MI) supervised learning scheme and fuzzy back-propagation (FBP) learning scheme are employed when the training data are available in advance. the former learning scheme is used to learn the meaningful semantic action, and the latter learning scheme to learn the linguistic information. The AFLAN can also perform on-line learning interactively when it is in use for fuzzy language acquisition. For the on-line learning, the MI reinforcement learning scheme and fuzzy reinforcement learning scheme are developed for on-line tuning. These two learning schemes are for the on-line learning of meaningful action and linguistic information, respectively. Finally, the application example, "fuzzy commands acquisition of a voice control system", will be conducted to illustrate the performance and applicability of the proposed AFLAN.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT833327015
http://hdl.handle.net/11536/59859
显示于类别:Thesis