Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorHsu, D. Franken_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:07:37Z-
dc.date.available2014-12-08T15:07:37Z-
dc.date.issued2010en_US
dc.identifier.issn0020-7160en_US
dc.identifier.urihttp://hdl.handle.net/11536/5992-
dc.identifier.urihttp://dx.doi.org/10.1080/00207160802512700en_US
dc.description.abstractA Hamiltonian cycle C=< u(1), u(2), ..., u(n(G)), u(1) > with n(G)=number of vertices of G, is a cycle C(u(1); G), where u(1) is the beginning and ending vertex and u(i) is the ith vertex in C and u(i)not equal u(j) for any i not equal j, 1 <= i, j <= n(G). A set of Hamiltonian cycles {C(1), C(2), ..., C(K)} of G is mutually independent if any two different Hamiltonian cycles are independent. For a hamiltonian graph G, the mutually independent Hamiltonianicity number of G, denoted by h(G), is the maximum integer k such that for any vertex u of G there exist k-mutually independent Hamiltonian cycles of G starting at u. In this paper, we prove that h(B(n))=n-1 if n >= 4, where B(n) is the n-dimensional bubble-sort graph.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonian cycleen_US
dc.subjectbubble-sort networksen_US
dc.subjectinterconnection networksen_US
dc.subjectmutually independent Hamiltonian cyclesen_US
dc.subjectCayley graphen_US
dc.titleThe construction of mutually independent Hamiltonian cycles in bubble-sort graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207160802512700en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF COMPUTER MATHEMATICSen_US
dc.citation.volume87en_US
dc.citation.issue10en_US
dc.citation.spage2212en_US
dc.citation.epage2225en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000281320400006-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000281320400006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.