Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhu, Junen_US
dc.contributor.authorHuang, Hsin-Chengen_US
dc.contributor.authorReyes, Perla E.en_US
dc.date.accessioned2014-12-08T15:07:37Z-
dc.date.available2014-12-08T15:07:37Z-
dc.date.issued2010en_US
dc.identifier.issn1369-7412en_US
dc.identifier.urihttp://hdl.handle.net/11536/5998-
dc.description.abstractSpatial linear models are popular for the analysis of data on a spatial lattice, but statistical techniques for selection of covariates and a neighbourhood structure are limited. Here we develop new methodology for simultaneous model selection and parameter estimation via penalized maximum likelihood under a spatial adaptive lasso. A computationally efficient algorithm is devised for obtaining approximate penalized maximum likelihood estimates. Asymptotic properties of penalized maximum likelihood estimates and their approximations are established. A simulation study shows that the method proposed has sound finite sample properties and, for illustration, we analyse an ecological data set in western Canada.en_US
dc.language.isoen_USen_US
dc.subjectConditional auto-regressive modelen_US
dc.subjectModel selectionen_US
dc.subjectPenalized likelihooden_US
dc.subjectSimultaneous auto-regressive modelen_US
dc.subjectSpatial statisticsen_US
dc.subjectVariable selectionen_US
dc.titleOn selection of spatial linear models for lattice dataen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGYen_US
dc.citation.volume72en_US
dc.citation.spage389en_US
dc.citation.epage402en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000277976300004-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000277976300004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.