標題: On selection of spatial linear models for lattice data
作者: Zhu, Jun
Huang, Hsin-Cheng
Reyes, Perla E.
交大名義發表
National Chiao Tung University
關鍵字: Conditional auto-regressive model;Model selection;Penalized likelihood;Simultaneous auto-regressive model;Spatial statistics;Variable selection
公開日期: 2010
摘要: Spatial linear models are popular for the analysis of data on a spatial lattice, but statistical techniques for selection of covariates and a neighbourhood structure are limited. Here we develop new methodology for simultaneous model selection and parameter estimation via penalized maximum likelihood under a spatial adaptive lasso. A computationally efficient algorithm is devised for obtaining approximate penalized maximum likelihood estimates. Asymptotic properties of penalized maximum likelihood estimates and their approximations are established. A simulation study shows that the method proposed has sound finite sample properties and, for illustration, we analyse an ecological data set in western Canada.
URI: http://hdl.handle.net/11536/5998
ISSN: 1369-7412
期刊: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
Volume: 72
起始頁: 389
結束頁: 402
顯示於類別:期刊論文


文件中的檔案:

  1. 000277976300004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。