Full metadata record
DC FieldValueLanguage
dc.contributor.author朱勝源en_US
dc.contributor.authorChu, Sheng-Yuanen_US
dc.contributor.author鄧清政en_US
dc.contributor.authorChing-Cheng Tengen_US
dc.date.accessioned2014-12-12T02:14:59Z-
dc.date.available2014-12-12T02:14:59Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840327019en_US
dc.identifier.urihttp://hdl.handle.net/11536/60274-
dc.description.abstract在本論文,乃基於增益餘量與相位餘量的規格要求,利用模糊類神經 網路提出一種新的調整PID控制器的方法。此方法可用來調整PID控制器的 參數,使其達到增益餘量與相位餘量規格的要求。由於根據增益餘量和相 位餘量的定義所得到的數學方程組太複雜,所以至今仍然沒有一套有系統 的分析與設計方法可以很準確而且有效的達到規格要求。所以,在本論文 □,首先,利用模糊類神經模型來辨識規格和 PID控制器參數之間的關係 。然後,利用模糊類神經網路自動調整 PID控制器的參數以符合不同的增 益餘量與相位餘量的規格。因此不需再使用繁雜的數值運算或是波德圖的 方式來設計。此外,和其它的方法比較,從模擬結果得知所提出來的方法 可以更準確的達到要求而且更有效果。 In this thesis, we propose a new PID tuning method using fuzzy nrural network based on gain and phase margin specifications (FNGP).We use the fuzzy neural networks to determine the parameters of PID controllers. Because of the complexity of the basic definitons of gain and phase margin equations, an analytical design method to achieve the specified gain and phase margins is not available to date. First, a fuzzy neural modeling method to identify the relationship between the specifications and the PID controllers parameters is proposed. Then, the FNGP is used to automatically tune the PID controllers parameters with different gain and phase margin specifications so that neither numerical methods nor graphical methods have to be used. This makes iteasy to tune the controller parameters to have the specified robustness and performance. Simulation results show that the FNGP can achieve the specifications much better than other methods.zh_TW
dc.language.isozh_TWen_US
dc.subjectPID控制器zh_TW
dc.subject增益餘量zh_TW
dc.subject相位餘量zh_TW
dc.subject模糊類神經網路zh_TW
dc.subjectPID Controllersen_US
dc.subjectgain marginen_US
dc.subjectphase marginen_US
dc.subjectfuzzy neural networken_US
dc.title基於增益餘量與相位餘量之PID控制器調整方法:利用模糊類神經網路zh_TW
dc.titleTuning of PID Controllers Based on Gain and Phase Margin Specifications Using Fuzzy Neural Networken_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis