標題: 類神經網路動態估測器與機械臂適應性力/位置控制器設計與實驗
A Neuro Dynamic Estimator for Adaptive Force/Position Control of Robot Manipulators
作者: 譚明哲
Tan, Ming-Jer
宋開泰
Song Kai-Tai
電控工程研究所
關鍵字: 順應性運動;適應性控制;類神經網路;加強式學習;機械臂;Compliant Motion;Adaptive Control;Aftificial Neural Network;Reinforcement Learning;Robot Manipulators
公開日期: 1995
摘要: 本論文首先針對順應性運動控制及其不確定性的問題提出一個卡式標
下基於模型的混合式控制器設計。對於模型的混合控制器雖然可以解決傳
統控制器高度非線性,力矩耦合,穩定度無法證明的限制。但是,控制器本
身需要準確的受控體的數學模型;然而,在一般的情形下,我們只能估測系
統的動態方程式,而無法得到準確的模型。這部份我們利用加強式學習的
設計來加以解決。使得基於模型的混合式控制器能夠達到我們預期的表現
。文中並以一個二軸機器臂為例,在事先不知道其動態模型的情況下,經過
重複的學習而逐漸找到最佳的表現,達成同時控制力量與位置的目的。我
們以電腦模擬及實驗來驗證所發展的力/位置控制器設計確能達成預期的
目標。
This thesis addresses the problem of complaint motion
control of robotmanipulators. We propose a new adaptive
control scheme to deal with the uncertainties of complaint
motion. An improved resolved accerlation Cartesian hybrid
controller based on the dynamic model of robot
manipulators is proposed. The restrictions in conventional
design such as nonlinearity, torquecoupling, and the proof of
stability can be solved using this model-based hybrid control
approach. The controller design requires the exact
mathematicalmodel. However, in general case, one can only
estimate the system equations, but can not obtain the exact
dynamic model. Therefore, we further propose a neural network
dynamic estimator to overcome the problem of inexact
dynamicmodel. This design allows model-based hybrid controller
achieve the predictedperformance. To demonstrate the
performance of this control design, we apply reinforcement
learning control on a two-link robot arm. Simulation results
show that the optimal performance for force and positioncan
be obtained simultaneously. Practical experiments on a self-
constructed two-link direct drive robot arm is presented to show
the possibility of applying this control scheme in real world
tasks.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT840327046
http://hdl.handle.net/11536/60304
顯示於類別:畢業論文