標題: Convex relaxation for solving posynomial programs
作者: Lu, Hao-Chun
Li, Han-Lin
Gounaris, Chrysanthos E.
Floudas, Christodoulos A.
資訊管理與財務金融系 註:原資管所+財金所
Department of Information Management and Finance
關鍵字: Convex underestimation;Posynomial functions
公開日期: 1-Jan-2010
摘要: Convex underestimation techniques for nonlinear functions are an essential part of global optimization. These techniques usually involve the addition of new variables and constraints. In the case of posynomial functions x(1)(alpha 1)x(2)(alpha 2) ... x(n)(alpha n), logarithmic transformations (Maranas and Floudas, Comput. Chem. Eng. 21: 351-370, 1997) are typically used. This study develops an effective method for finding a tight relaxation of a posynomial function by introducing variables y(j) and positive parameters beta(j), for all alpha(j) > 0, such that y(j) = x(j)(-beta j). By specifying beta(j) carefully, we can find a tighter underestimation than the current methods.
URI: http://dx.doi.org/10.1007/s10898-009-9414-2
http://hdl.handle.net/11536/6072
ISSN: 0925-5001
DOI: 10.1007/s10898-009-9414-2
期刊: JOURNAL OF GLOBAL OPTIMIZATION
Volume: 46
Issue: 1
起始頁: 147
結束頁: 154
Appears in Collections:Articles


Files in This Item:

  1. 000272375600010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.