完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShieh, Gwowenen_US
dc.date.accessioned2014-12-08T15:07:44Z-
dc.date.available2014-12-08T15:07:44Z-
dc.date.issued2010en_US
dc.identifier.issn0027-3171en_US
dc.identifier.urihttp://hdl.handle.net/11536/6076-
dc.identifier.urihttp://dx.doi.org/10.1080/00273171.2010.483393en_US
dc.description.abstractDue to its extensive applicability and computational ease, moderated multiple regression (MMR) has been widely employed to analyze interaction effects between 2 continuous predictor variables. Accordingly, considerable attention has been drawn toward the supposed multicollinearity problem between predictor variables and their cross-product term. This article attempts to clarify the misconception of multicollinearity in MMR studies. The counterintuitive yet beneficial effects of multicollinearity on the ability to detect moderator relationships are explored. Comprehensive treatments and numerical investigations are presented for the simplest interaction model and more complex three-predictor setting. The results provide critical insight that both helps avoid misleading interpretations and yields better understanding for the impact of intercorrelation among predictor variables in MMR analyses.en_US
dc.language.isoen_USen_US
dc.titleOn the Misconception of Multicollinearity in Detection of Moderating Effects: Multicollinearity Is Not Always Detrimentalen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00273171.2010.483393en_US
dc.identifier.journalMULTIVARIATE BEHAVIORAL RESEARCHen_US
dc.citation.volume45en_US
dc.citation.issue3en_US
dc.citation.spage483en_US
dc.citation.epage507en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000278669000004-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000278669000004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。