標題: Optimization of the GTA Welding Process Using Combination of the Taguchi Method and a Neural-Genetic Approach
作者: Lin, Hsuan-Liang
Chou, Chang-Pin
交大名義發表
National Chiao Tung University
關鍵字: Gas tungsten arc welding;Genetic algorithm;Neural networks;Taguchi method
公開日期: 2010
摘要: Many parameters affect the quality of the gas tungsten arc (GTA) welding process. It is not easy to obtain optimal parameters of the GTA welding process. This paper applies an integrated approach using the Taguchi method, artificial neural network (ANN), and genetic algorithm (GA) to optimize the weld bead geometry of GTA welding specimens. The proposed approach consists of two stages. First stage executes initial optimization via Taguchi method to construct a database for the ANN. In second stage, an ANN is used to provide the nonlinear relationship between factors and the response. Then, a GA is applied to obtain the optimal factor settings. The experimental results showed that the weld bead geometry of the optimal welding parameters via the proposed approach is slender than apply Taguchi method only.
URI: http://hdl.handle.net/11536/6131
http://dx.doi.org/10.1080/10426910903365711
ISSN: 1042-6914
DOI: 10.1080/10426910903365711
期刊: MATERIALS AND MANUFACTURING PROCESSES
Volume: 25
Issue: 7
起始頁: 631
結束頁: 636
顯示於類別:期刊論文


文件中的檔案:

  1. 000280678300014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。