完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Hsuan-Liangen_US
dc.contributor.authorChou, Chang-Pinen_US
dc.date.accessioned2014-12-08T15:07:48Z-
dc.date.available2014-12-08T15:07:48Z-
dc.date.issued2010en_US
dc.identifier.issn1042-6914en_US
dc.identifier.urihttp://hdl.handle.net/11536/6131-
dc.identifier.urihttp://dx.doi.org/10.1080/10426910903365711en_US
dc.description.abstractMany parameters affect the quality of the gas tungsten arc (GTA) welding process. It is not easy to obtain optimal parameters of the GTA welding process. This paper applies an integrated approach using the Taguchi method, artificial neural network (ANN), and genetic algorithm (GA) to optimize the weld bead geometry of GTA welding specimens. The proposed approach consists of two stages. First stage executes initial optimization via Taguchi method to construct a database for the ANN. In second stage, an ANN is used to provide the nonlinear relationship between factors and the response. Then, a GA is applied to obtain the optimal factor settings. The experimental results showed that the weld bead geometry of the optimal welding parameters via the proposed approach is slender than apply Taguchi method only.en_US
dc.language.isoen_USen_US
dc.subjectGas tungsten arc weldingen_US
dc.subjectGenetic algorithmen_US
dc.subjectNeural networksen_US
dc.subjectTaguchi methoden_US
dc.titleOptimization of the GTA Welding Process Using Combination of the Taguchi Method and a Neural-Genetic Approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/10426910903365711en_US
dc.identifier.journalMATERIALS AND MANUFACTURING PROCESSESen_US
dc.citation.volume25en_US
dc.citation.issue7en_US
dc.citation.spage631en_US
dc.citation.epage636en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000280678300014-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000280678300014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。