標題: 貨櫃船之到達過程模式分析-以高雄港為例
Studies on Containerships' Arrival Process to Kaohsiung Harbor
作者: 盧坤信
Lu, Kun-Hsin
謝尚行
Shang-Hsing Hsieh
運輸與物流管理學系
關鍵字: 貨櫃船;到達過程;波氏過程;非齊性波氏過程;containership;arrival process;Poisson process;non-homogeneous Poisson process
公開日期: 1996
摘要: 船舶之到達過程為港埠營運管理研究之基礎,國內大部份研究[1][2 ][5][10][11][15]都指出船舶之到達過程為波氏過程(Poisson Process) ,而[14]指出基隆港商船到達過程為非齊性波氏過程(Nonhomogeneous Poisson Process),非齊性波氏過程最主要特點為船舶之平均到達率為時 間的函數,到達率(Arrival Rate),不僅與所橫跨之時段長有關,且與所 在之時間點有關。以非齊性波氏過程來描述船舶之到達過程,其優點為更 能契合實際情況,且近年來廣為應用於其他事件之探討,如地面臭氧含量 超過某定值[31],或地震之發生[28]等。 本文之主要目的為找出一適 當的模式以描述高雄港貨櫃船到達過程,至於預測能力並非本文所要探討 的重心。本文針對高雄港貨櫃船到達過程加以研究,結果顯示高雄港貨櫃 船到達過程為非齊性波氏過程,定期貨櫃船之到達過程亦是為非齊性波氏 過程,而不定期貨櫃船之到達過程為波氏過程。此例可作為Khintchine's Theorem[32]的實例參考。 非齊性波氏過程主要有兩個條件必須滿足- 獨立增量及在[0,t)時段內到達之貨櫃船艘數,符合以為參數之波氏過程 [23],獨立增量之意義是在不重疊的時段內,事件發生的次數彼此獨立, 或是連續兩事件發生之時間間距彼此是獨立的。但有不少研究[14][28]都 忽略對獨立增量條件之考量,[31]以相關性及應用[29]所提之方法來驗證 此兩個條件之存在。本文所作出非齊性波氏過程模式因考量之時間變數有 年、月、日、小時,無法檢驗出時間間距彼此間有獨立性存在,但資料契 合模式之情況良好。 The arrival rate of a Non-homogeneous Poisson Process(NHPP) is a function of time t, i.e. change with the time. This paper provides a Non-homogeneous Poisson Process Model to describe the arrival process of containerships to Kaohsiung harbor. There are two crucial assumptions for a NHPP, which are (i) Independent Increments; and (ii) the number of arrivals in time [0,t) is Poisson Process with (good fit to the data). Independent Increments means the number of arrivals in separate intervals are independent, or equivalently, that the inter-arrival times are independent. We propose three options in explanation of Independent Increments. And we use the transformation to check that (ii) is satisfied. The result show that the arrival process of containerships to Kaohsiung harbor is a NHPP. We also examine the arrival process of liner containerships to Kaohsiung harbor is a NHPP, and the arrival process of tramp containerships to Kaohsiung harbor is a Poisson Process, which is a good example for Khintchine's Theorem.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850118041
http://hdl.handle.net/11536/61561
Appears in Collections:Thesis