Title: 多維度背包問題之線性搜尋演算法
An Effective Algorithm for Multi-dimensional Knapsack Problem
Authors: 楊淵棕
Yang, Yuan-Tsung
楊千
Chyan Yang
資訊管理研究所
Keywords: 背包問題;線性搜尋;Knapsack Problem;Linear Search
Issue Date: 1996
Abstract: 背包問題(Knapsack Problem:KP)是作業研究領域中相當著名的問題
。然而,背包問題最佳解之獲得是NP-hard的問題,如果以窮舉法(
Exhaustive Enumerations)來求解,一個有n個項目的背包問題,將需要
計算O(2^n)次; 尤其當項目甚大時(例如n=60, ),欲求得背包問題之
最佳解,是相當耗時的。 Yang於1992提出線性搜尋演算法(Linear
Search Algorithm),求解一維度背包問題;其原理是依據,若有一個項
目所使用的成本較低(Cj),或者是它所帶來的利益(Pj)較高,或者是每單
位成本所帶來的利益(Pj/Cj)較高,則此項目進入最佳解集合的機率也就
較高。 本研究加入準則Pj-Cj於Yang的線性演算法中,以改良線性搜
尋演算法之績效。並進一步將線性搜尋演算法運用在多維度背包問題之求
解上。經由電腦大量的模擬驗證,本研究獲致以下結論:(1)準則Pj-Cj的
加入,對於線性搜尋演算法的績效,並無顯著的提昇。(2)對於一維度背
包問題,本研究的模擬結果顯示,線性搜尋演算法有93%以上 的機率可
以找到最佳解。(3)對於多維度背包問題,線性搜尋演算法的績效雖然沒
有一維度背包問題來得 好,但模擬結果顯示,仍有82%以上的機率可以
找到最佳解。(4)無論一維度或多維度背包問題,線性搜尋演算法即使無
法找到最佳解,其遺 漏最佳解項目的平均個數亦不超過兩個。
Knapsack Problem is a well-known problem in Operation
Research. However, Knapsack Problem is a NP-hard problem . If we
solve Knapsack Problem by Exhaustive Enumeration , a problem
with 60 items will need O(2^n) computation time. It is time-
consuming to solve a Knapsack Problem,especially when n is large
. Yang proposed Linear Search Algorithm to solve One-
dimensional Knapsack Problem in 1992. The philosophy behind
Linear Search Algorithm is that if an item with lower cost ( Cj
) or with higher profit ( Pj ) or with higher profit per cost (
Pj / Cj ), it will have a higher probability to get into the
optimal solution set.This thesis adds a new criteria Pj-Cj into
Yang's Linear Search Algorithm in order to improve the
performance of Linear Search Algorithm . Furthermore, this
thesis try to solve Multi-dimensional Knapsack Problem by Linear
Search Algorithm. By verifying a large amount of cases , this
research gets some conclusions listed below:1. It is no obvious
improvement for the performance of Linear Search Algorithm by
adding the criteria Pj-Cj.2. The results of computer simulation
in this research show that the probability to find the optimal
solution of One-dimensional Knapsack Problem is more than 93% by
Linear Search Algorithm.3. For Multi-dimensional Knapsack
Problem , the performance of Linear Search Algorithm is not as
goos as that of One-dimensional Knapsack Problem; however, by
using Linear Search Algorithm , the probability to find the
optimal solution is still more than 82%.4. For either One-
dimensional or Multi-dimensional Knapsack Problem , even if
Linear Search Algorithm can't find the optimal solution , it
won't loss more than two optimal solution items in average.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850396008
http://hdl.handle.net/11536/61838
Appears in Collections:Thesis