Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorSiana, Lindaen_US
dc.contributor.authorShou, Yu-Wenen_US
dc.contributor.authorYang, Chien-Tingen_US
dc.date.accessioned2014-12-08T15:07:56Z-
dc.date.available2014-12-08T15:07:56Z-
dc.date.issued2010en_US
dc.identifier.issn1687-6172en_US
dc.identifier.urihttp://hdl.handle.net/11536/6251-
dc.identifier.urihttp://dx.doi.org/10.1155/2010/578370en_US
dc.description.abstractThis paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.en_US
dc.language.isoen_USen_US
dc.titleMulticlient Identification System Using Adaptive Probabilistic Modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2010/578370en_US
dc.identifier.journalEURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSINGen_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000281257900001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000281257900001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.