Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, H. C.en_US
dc.contributor.authorMou, C. -Y.en_US
dc.date.accessioned2014-12-08T15:07:58Z-
dc.date.available2014-12-08T15:07:58Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn1434-6028en_US
dc.identifier.urihttp://dx.doi.org/10.1140/epjb/e2009-00437-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/6265-
dc.description.abstractWe present a general quantum kinetic theory of spin transport based on the Kadanoff- Baym equation (KBE), which we use to study dynamical spin processes in semiconductors right down to femtosecond and nanometer scales. In our application of KBE we describe the evolution of the non-equilibrium 2x2 matrix Green function for carrier spin, averaged over the thermal bath. Spin relaxation effects are treated within the Kadanoff-Baym Ansatz (KBA), while carrier interactions are treated within the random-phase model of screening. We track the detailed oscillation of the spin- polarized carrier state within the coherence time. Our general kinetic approach also allows description of the spin Hall effect when both impurity scattering and the Frohlich interaction are included in the KBE collision term. We find that the level of spin current is very sensitive to the density of impurities, and that the Frohlich interaction can generate a considerable spin current. Significantly, the Frohlich term leads to a unique type of oscillatory behaviour in the spin current that is independent of impurity scattering effects.en_US
dc.language.isoen_USen_US
dc.titleQuantum kinetic equation for spin relaxation and spin Hall effect in GaAsen_US
dc.typeArticleen_US
dc.identifier.doi10.1140/epjb/e2009-00437-3en_US
dc.identifier.journalEUROPEAN PHYSICAL JOURNAL Ben_US
dc.citation.volume73en_US
dc.citation.issue2en_US
dc.citation.spage229en_US
dc.citation.epage242en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000274253100011-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000274253100011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.