Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ho, Tung-Yang | en_US |
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, D. Frank | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:08:02Z | - |
dc.date.available | 2014-12-08T15:08:02Z | - |
dc.date.issued | 2010-01-01 | en_US |
dc.identifier.issn | 0893-9659 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.aml.2009.03.025 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/6291 | - |
dc.description.abstract | Assume that n and delta are positive integers with 3 <= delta < n. Let hc(n, delta) be the minimum number of edges required to guarantee an n-vertex graph G with minimum degree delta(G) >= delta to be haimiltonian connected. Any n-vertex graph G with delta(G) >= delta is hamiltonian connected if vertical bar E(G)vertical bar >= hc(n, delta). We prove that hc(n, delta) = C(n - delta + 1, 2) + delta(2) - delta + 1 if delta <= [n+3x(n mod 2)/6] + 1, hc(n, delta) = C(n - [n/2] + 1, 2) + [n/w](2) - [n/2] + 1 if [n+3x(n mod 2)/6] + 1 < delta <= [n/2], and hc(n, delta) = [n delta/2] if delta > [n/2]. (C) 2009 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hamiltonian connected | en_US |
dc.subject | Edge-fault tolerant hamiltonian connected | en_US |
dc.title | On the extremal number of edges in hamiltonian connected graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.aml.2009.03.025 | en_US |
dc.identifier.journal | APPLIED MATHEMATICS LETTERS | en_US |
dc.citation.volume | 23 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 26 | en_US |
dc.citation.epage | 29 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000272642100006 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.