Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, Tung-Yangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, D. Franken_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:08:02Z-
dc.date.available2014-12-08T15:08:02Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn0893-9659en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.aml.2009.03.025en_US
dc.identifier.urihttp://hdl.handle.net/11536/6291-
dc.description.abstractAssume that n and delta are positive integers with 3 <= delta < n. Let hc(n, delta) be the minimum number of edges required to guarantee an n-vertex graph G with minimum degree delta(G) >= delta to be haimiltonian connected. Any n-vertex graph G with delta(G) >= delta is hamiltonian connected if vertical bar E(G)vertical bar >= hc(n, delta). We prove that hc(n, delta) = C(n - delta + 1, 2) + delta(2) - delta + 1 if delta <= [n+3x(n mod 2)/6] + 1, hc(n, delta) = C(n - [n/2] + 1, 2) + [n/w](2) - [n/2] + 1 if [n+3x(n mod 2)/6] + 1 < delta <= [n/2], and hc(n, delta) = [n delta/2] if delta > [n/2]. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonian connecteden_US
dc.subjectEdge-fault tolerant hamiltonian connecteden_US
dc.titleOn the extremal number of edges in hamiltonian connected graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aml.2009.03.025en_US
dc.identifier.journalAPPLIED MATHEMATICS LETTERSen_US
dc.citation.volume23en_US
dc.citation.issue1en_US
dc.citation.spage26en_US
dc.citation.epage29en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000272642100006-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000272642100006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.