標題: | On the extremal number of edges in hamiltonian connected graphs |
作者: | Ho, Tung-Yang Lin, Cheng-Kuan Tan, Jimmy J. M. Hsu, D. Frank Hsu, Lih-Hsing 資訊工程學系 Department of Computer Science |
關鍵字: | Hamiltonian connected;Edge-fault tolerant hamiltonian connected |
公開日期: | 1-Jan-2010 |
摘要: | Assume that n and delta are positive integers with 3 <= delta < n. Let hc(n, delta) be the minimum number of edges required to guarantee an n-vertex graph G with minimum degree delta(G) >= delta to be haimiltonian connected. Any n-vertex graph G with delta(G) >= delta is hamiltonian connected if vertical bar E(G)vertical bar >= hc(n, delta). We prove that hc(n, delta) = C(n - delta + 1, 2) + delta(2) - delta + 1 if delta <= [n+3x(n mod 2)/6] + 1, hc(n, delta) = C(n - [n/2] + 1, 2) + [n/w](2) - [n/2] + 1 if [n+3x(n mod 2)/6] + 1 < delta <= [n/2], and hc(n, delta) = [n delta/2] if delta > [n/2]. (C) 2009 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.aml.2009.03.025 http://hdl.handle.net/11536/6291 |
ISSN: | 0893-9659 |
DOI: | 10.1016/j.aml.2009.03.025 |
期刊: | APPLIED MATHEMATICS LETTERS |
Volume: | 23 |
Issue: | 1 |
起始頁: | 26 |
結束頁: | 29 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.