完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Han-Hsingen_US
dc.contributor.authorChen, Ren-Rawen_US
dc.contributor.authorLee, Cheng-Fewen_US
dc.date.accessioned2014-12-08T15:08:05Z-
dc.date.available2014-12-08T15:08:05Z-
dc.date.issued2009-12-01en_US
dc.identifier.issn0219-6220en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0219622009003703en_US
dc.identifier.urihttp://hdl.handle.net/11536/6332-
dc.description.abstractThis paper first reviews empirical evidence and estimation methods of structural credit risk models. Next, an empirical investigation of the performance of default prediction under the down-and-out barrier option framework is provided. In the literature review, a brief overview of the structural credit risk models is provided. Empirical investigations in extant literature papers are described in some detail, and their results are summarized in terms of subject and estimation method adopted in each paper. Current estimation methods and their drawbacks are discussed in detail. In our empirical investigation, we adopt the Maximum Likelihood Estimation method proposed by Duan [Mathematical Finance 10 (1994) 461-462]. This method has been shown by Ericsson and Reneby [Journal of Business 78 (2005) 707-735] through simulation experiments to be superior to the volatility restriction approach commonly adopted in the literature. Our empirical results surprisingly show that the simple Merton model outperforms the Brockman and Turtle [Journal of Financial Economics 67 (2003) 511-529] model in default prediction. The inferior performance of the Brockman and Turtle model may be the result of its unreasonable assumption of the flat barrier.en_US
dc.language.isoen_USen_US
dc.subjectStructural credit risk modelen_US
dc.subjectestimation approachen_US
dc.subjectdefault predictionen_US
dc.subjectMaximum Likelihood Estimation (MLE)en_US
dc.titleEMPIRICAL STUDIES OF STRUCTURAL CREDIT RISK MODELS AND THE APPLICATION IN DEFAULT PREDICTION: REVIEW AND NEW EVIDENCEen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0219622009003703en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKINGen_US
dc.citation.volume8en_US
dc.citation.issue4en_US
dc.citation.spage629en_US
dc.citation.epage675en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000275348100002-
dc.citation.woscount3-
顯示於類別:期刊論文