Full metadata record
DC FieldValueLanguage
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorChang, Ching-Mingen_US
dc.date.accessioned2014-12-08T15:08:05Z-
dc.date.available2014-12-08T15:08:05Z-
dc.date.issued2009-12-01en_US
dc.identifier.issn0362-546Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.na.2009.04.020en_US
dc.identifier.urihttp://hdl.handle.net/11536/6333-
dc.description.abstractThe generalized synchronization is studied by applying pure error dynamics and elaborate Lyapunov function in this paper. Generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation, instead of current mixed error dynamics in which master state variables and slave state variables are presented. The elaborate Lyapunov function is applied rather than the current plain square sum Lyapunov function, deeply weakening the power of Lyapunov direct method. The scheme is successfully applied to both autonomous and nonautonomous double Mathieu systems with numerical simulations. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectChaosen_US
dc.subjectGeneralized synchronizationen_US
dc.subjectDouble Mathieu systemen_US
dc.subjectLyapunov functionen_US
dc.subjectLyapunov direct methoden_US
dc.titleGeneralized synchronization of chaotic systems by pure error dynamics and elaborate Lyapunov functionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.na.2009.04.020en_US
dc.identifier.journalNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONSen_US
dc.citation.volume71en_US
dc.citation.issue11en_US
dc.citation.spage5301en_US
dc.citation.epage5312en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000270609500021-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000270609500021.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.