標題: 熱致動式無閥門微泵之研究
Investigation of A Thermally Actuated Valveless Miropump
作者: 許鎮鵬
Sheu, Jenn-Perng
徐文祥
Hsu, Wen-Syang
機械工程學系
關鍵字: 微薄膜致動器;厚深腔壁結構
公開日期: 1997
摘要: 本論文研究目的在於研製出熱動式無閥門微泵中的關鍵元件:微薄膜至動器以及厚深壁結構。在元件的設計製造方面,乃是利用半導體相關製程技術,並且結合機械結構設計理念而成。 微薄膜致器驅動原理是採用不同材料之間的熱膨脹係數差異,以及薄膜不同的邊界條件,當選擇性地加溫薄膜的樑結構或中心結構的過過中,使得薄膜具有向下或向上彎曲形變的雙向撓曲能力,而輸出大行程及力量。根據歷年文獻,本論文乃是首篇提出具雙向形變能力的熱致動式微薄膜致動器。最初設計的微薄膜致動器之結構是二層薄膜(不包含加熱電阻層:線),包括二氧化矽(主要的薄膜結構層) ,polyimide (與二氧化矽組成 bimorph 結構),共經過四道光罩製作而成。利用有限元素軟體ANSYS 5.3分析薄膜整體結構撓曲量和溫度的關係,做為將來實際驅動時,輸入能量的參考,經由分析結果,當1mm2的薄膜,在200°C的操作溫差下,可達向上向下總變形量100 微米。然而此設計之實驗測試結果不良。 經過改良及應力補償後之微薄膜致動器,為四層薄膜結構,包括二氧化矽╱氮化矽╱二氧化矽(主要的薄膜結構層),鋁(與主要薄膜結構層組成bimorph結構),共經過五道光罩製作而成。測試結果顯示其最大向上及向下形變量分別為50微米和15微米,所需輸入電壓皆小於四伏特,所需輸入功率亦皆小於400毫瓦。此外,在實驗中,亦發現它種微薄至動器。在不同之輸入功率下,產生雙向形變之有趣現象,此現象在文獻上尚未被提出,其原理亦正在探索研究中。 另外在微泵腔壁結構部份,傳統的微泵腔壁結構是由兩個被動止回閥及連接於腔室的薄膜至致動器所組成,經由薄膜的振動造成腔室內體積的改變,迫使流體通過入口閥流向出口閥。而被動止回閥門經常開關必定會引起一些破壞,如閥門開關前後所受的高壓力差、磨耗、疲勞等,且這類閥門結構需要較為複雜的製程配合。因此我們採用微小擴散╱噴射型導流道取代一般微泵腔室的被動止回閥門,並且於流道出口部份,增加突起的細長條結構設計,由理論得知此設計可以在每一個循環中,得到較大淨排水量的效果。 為配合微薄膜致動器大撓曲量的特性,製作較深厚的微泵腔室結構(例如:100微米深)可符合較大的體積改變量的需求。我們採用 LIGA 製程,製作微泵腔室結構。其中,X 光光罩的製作是關鍵技術,在此發展低成本的光罩製作方式,分別以單晶矽與低應力氮化矽作為光罩之薄膜材料,並且電鑄厚度數微米至20微米的金作為吸收層。此外,亦發展玻璃之深蝕刻枝術,作為提供微泵腔室結構之另一選擇。
A micro membrane vibrator consisting of four bimorph cantilever beams and a central bimorph membrane is designed and fabricated here. In order to enlarge the volume stroke of the micropump, the membrane vibrator with two-way deflection ability is proposed. Due to the discrepancy of thermal expansion coefficients between different layers, the membrane moves with temperature change. The threelayer structure including SiO2-Ni-polyimide is fabricated with four masks. Additionally, backside etching is performed to fabricate the membrane structures. The numerical finite element program ANSYS 5.3 is used to simulate the behavior of the membrane vibrator. The maximum Z-axis displacement of the 1000 m x 1000 m micro membrane vibrator is 60 min upward direction and 40um in downward direction at temperature 200°C in simulation. The con ventional chamber structure of a micropump consists of two passive check valves connected to an oscillating diaphragm which creates a chamber volume change. Because the movable check valves may cause many problems such as a high pressure drop across the valves, wear, fatigue of the movable parts, and more complicated fabrication processes, thus the valveless chanber structures are preferred Referring to the previous research, we design two new parts including rounded inlet and reentrant outlet. By means of this special on shapes of the flow channels, a larger net volume flow can be predicted to reach in a pumping cycle. Here,we interest in fabricating thick chamber structures (i. e. 100 m thick ) which are possible to induce larger volume stroke. Therefore, the LIGA technique is utilized to fabricate thick chamber structures. We choose single crystal silicon and silicon-rich nitride as the carrier material of the deep X-ray masks which is the key technique of LIGA. By electroplating Au from several micro meter to about 20 micro meter, the low cost deep X-ray masks are fabricated. In addition, the deep etching of the Pyrex 7740 is studied which is suitable for fabricating the thick pump chamber structures.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT863489015
http://hdl.handle.net/11536/63485
Appears in Collections:Thesis