Full metadata record
DC FieldValueLanguage
dc.contributor.author蕭勝中en_US
dc.contributor.authorShiau, Shenq-Jongen_US
dc.contributor.author許義容en_US
dc.contributor.authorHsu, Yi-Junen_US
dc.date.accessioned2014-12-12T02:19:43Z-
dc.date.available2014-12-12T02:19:43Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT863507011en_US
dc.identifier.urihttp://hdl.handle.net/11536/63585-
dc.description.abstract在這篇論文,我們建立了將n維球面送到n+1維球面的一個預定均曲率H之嵌入的存在性。在此,Y是n維球面上的一條曲線 ,而這亦是n維球面上擬線性橢圓微分方程的問題。我們主要學習此方程的Schauder型估計 ,在H擁有充份的條件下,我們找到了最大值和梯度的估計,運用連續方法,我們得到了存在性的結果。zh_TW
dc.description.abstractIn this paper we establish the existence of an embedding Y:Sn→ Sn+1 with the prescribed mean curvature H. In the case of Y is a graph on Sn, this problem is a quasilinear elliptic equation on the sphere Sn. The key to our study of this equation is the Schauder-type estimates. Under certain conditions on H, we find a maximum estimate and a gradient estimate. Based on the continulity method, we obtain the result of existence.en_US
dc.language.isoen_USen_US
dc.subject均曲率zh_TW
dc.subject球面zh_TW
dc.title預定均曲率之球面zh_TW
dc.titleSpheres with Prescribed Mean Curvatureen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis