Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 蕭勝中 | en_US |
dc.contributor.author | Shiau, Shenq-Jong | en_US |
dc.contributor.author | 許義容 | en_US |
dc.contributor.author | Hsu, Yi-Jun | en_US |
dc.date.accessioned | 2014-12-12T02:19:43Z | - |
dc.date.available | 2014-12-12T02:19:43Z | - |
dc.date.issued | 1997 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT863507011 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/63585 | - |
dc.description.abstract | 在這篇論文,我們建立了將n維球面送到n+1維球面的一個預定均曲率H之嵌入的存在性。在此,Y是n維球面上的一條曲線 ,而這亦是n維球面上擬線性橢圓微分方程的問題。我們主要學習此方程的Schauder型估計 ,在H擁有充份的條件下,我們找到了最大值和梯度的估計,運用連續方法,我們得到了存在性的結果。 | zh_TW |
dc.description.abstract | In this paper we establish the existence of an embedding Y:Sn→ Sn+1 with the prescribed mean curvature H. In the case of Y is a graph on Sn, this problem is a quasilinear elliptic equation on the sphere Sn. The key to our study of this equation is the Schauder-type estimates. Under certain conditions on H, we find a maximum estimate and a gradient estimate. Based on the continulity method, we obtain the result of existence. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 均曲率 | zh_TW |
dc.subject | 球面 | zh_TW |
dc.title | 預定均曲率之球面 | zh_TW |
dc.title | Spheres with Prescribed Mean Curvature | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |