Title: 用多實例演算法做影像分類與檢索
Image classification and indexing by Multiple-Instance Learning
Authors: 黃立吾
Li-wu Huang
傅心家
Fu, Hsin-Chia
資訊科學與工程研究所
Keywords: 多實例學習;互異密度;影像檢索;影像分類;EM 演算法;Multiple-Instance learning;Diverse Density;Image Indexing;Image Classfication;EM Algorithm
Issue Date: 1998
Abstract: 為了搜尋龐大的影像與視訊資料,我們利用多實例學習的架構。
使用者所標記的是一個實例袋而非單一的實例,每個實例袋裡
有多個實例。在訓練資料中,
如果一個實例袋中有一個實例是正面的,則標記該實例袋為正面的;
如果一個實例袋中所有的實例都是負面的,則標記該實例袋為負面的。
我們要訓練出一個可以分類的概念。
我們使用互異密度當做多實例學習的指標,使用EM演算法最大化互異密度。
把這些技巧應用在影像檢索上,每一個影像都是一個實例袋,使用者指定好
正面的實例袋與負面的實例袋後,可以找到類似的影像。
In order to search image and video data, we use a framework
called multiple-instance learning.
Each example labled over internet by teacher is a bag, consisting of
any number of instances. A bag is labeled negative if all
instances in it are negative. A bag is labeled positive if at
least one of instances in it is positive.
We would like to learn a concept which will correctly
classify unseen bags.
We used Diverse Density algorithm for learning concepts
from multiple-instance examples. Then the EM algorithm is used to maximize
Diverse Density. Then we applied these techniques
to problems in image or video database retrieval. Each image
or a video frame is a bag, our
system uses a small set of user-selected positive and negative
examples to learn a scene concept which is used to retrieve
similar images from the database.
Based on the similar images, a user can decide the related video.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870392070
http://hdl.handle.net/11536/64094
Appears in Collections:Thesis