Full metadata record
DC FieldValueLanguage
dc.contributor.author劉雅惠en_US
dc.contributor.authorYa-Hui Liuen_US
dc.contributor.author徐力行en_US
dc.contributor.authorDr. Lih-hsing Hsuen_US
dc.date.accessioned2014-12-12T02:20:28Z-
dc.date.available2014-12-12T02:20:28Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870394030en_US
dc.identifier.urihttp://hdl.handle.net/11536/64170-
dc.description.abstract設計一個最佳k容錯之號誌環網路相當於建造一個最佳k漢米爾頓連通圖, 其中k表示點或邊壞掉的個數. 對任意 $V_1 \subset V$, $E_1 \subset E$ 滿足 $\left| V_1 \right|+\left| E_1 \right| \leq k $ 的圖$G=(V,E)$ 被稱為k-漢米爾頓連通圖假如$G-(V_1-E_1)$是漢米爾頓連通圖. 在所有相同點數的k漢米爾頓連通圖裡面, 邊的點數最少的k漢米爾頓連通圖G*是最佳的. 在這篇論文中, 我們證明 是最佳k漢米爾頓連通圖其中k是大於等於4的偶正整數.zh_TW
dc.description.abstractDesigning an optimal $k$-fault-tolerant network for token rings is equivalent to constructing an optimal $k$-hamiltonian graph, where $k$ is a positive integer and corresponds to the number of faults. A graph $G=(V,E)$ is $k$-hamiltonian if $G-(V_1-E_1)$ is hamiltonian for arbitrary $V_1 \subset V$, $E_1 \subset E$ with $\left| V_1 \right|+\left| E_1 \right| \leq k $. A $k$-hamiltonian graph G* is optimal if it contains the fewest edges among all $k$-hamiltonian graphs with the same number of vertices as G*. In this thesis, we prove that $G_{n,k}$ is optimal $k$-hamiltonian for $k$ an even integer greater than 4.en_US
dc.language.isozh_TWen_US
dc.subject容錯zh_TW
dc.subject號誌環zh_TW
dc.subjectk漢米爾頓連通圖zh_TW
dc.subjectfault toleranten_US
dc.subjecttoken ringsen_US
dc.subjectk-hamiltonian graph.en_US
dc.title最佳多容錯之號誌環網路zh_TW
dc.titleOptimal k-Fault-Tolerant Networks for Token Ringsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis