标题: | 侦测改变点之模糊逐段回归模式 A Fuzzy Piecewise Regression Model with Change-point Detection |
作者: | 余菁蓉 Yu Jing Rung 黎汉林 Li Han Lin 资讯管理研究所 |
关键字: | 模糊回归;逐段;二次规划;可能性;必然性;Fuzzy Regression;Piecewise;Quadratic programming;Possibility;Necessity |
公开日期: | 1998 |
摘要: | Tanaka and Ishibuchi 所提出的模糊回归分析法当资料变异非常大时,可能性模式所构成的区间很宽而必然性模式则无法算出;此外,他们的方法所求出的模式,其系数常不是模糊数。为处理资料变异大的问题,本文提一模糊逐段回归模式,并且也采用二次规划来处理模糊数宽度为零的现象。本研究所提出模糊逐段回归模式有两个优点:一、可同时算出模糊逐段回归模式和改变点位置;二、可透过自动区隔资料侦测到离群值。 The possibilistic regression analysis proposed by Tanaka and Ishibuchi, which is extremely sensitive to outliers, may not able to find feasible solution. Besides, when they use linear programming in possibilistic regression analysis, some coefficients are limited to be crisp because of the characteristic of linear programming. To overcome large variation problem, we propose fuzzy piecewise regression method. Our method can also treat the problem with crisp coefficients by utilizing quadratic programming approach. The proposed fuzzy piecewise regression method has two advantages: (a) It can detect the positions of change-points and can estimate the fuzzy piecewise regression model simultaneously; (b) It can deal with outliers by automatically segmenting the data. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT870396029 http://hdl.handle.net/11536/64256 |
显示于类别: | Thesis |