标题: 数位行动无线电通讯之同步方法
Synchronization Methods in Digital Mobile Radio Communications
作者: 黄永亮
Yung-Liang Huang
黄家齐
Chia-Chi Huang
电信工程研究所
关键字: 同步;高斯最小相移键;频率正交分割多工;快速傅立叶转换;符号时序;频率偏移;前序;保护间隔;Synchronization;Gaussian Minimum Shift Keying (GMSK);Orthogonal Frequency Division Multiplexing (OFDM);Fast Fourier Transform (FFT);Symbol Timing;Frequency Offset;Preamble;Guard Interval
公开日期: 1998
摘要: 在这本论文中,我们探讨了两种用于数位行动无线电通讯之同步方法,并且分别在采用高斯最小相移键 (Gaussian Minimum Shift Keying, GMSK) 及频率正交分割多工 (Orthogonal Frequency Division Multiplexing, OFDM) 等调变方式的系统中评估这两种同步方法。
首先,我们提出一种全数位式,可共同完成频率偏移补偿及符号时序恢复之非同调 (noncoherent) 及同调 (coherent) GMSK接收器架构。当采用同调解调变时,所须之载波相位偏移也可被估计出来。
接收到的基频复数讯号先经频率鉴别,再经过执行快速傅立叶转换 (Fast Fourier Transform, FFT) 的数位滤波器;频率偏移即可从FFT的直流项算出,而符号时序错误可从FFT的某一特殊频率之相位角度算出,此频率为位元传输率之一半之整数倍。这两估计参数则可用来在前序 (preamble) 时期中做频率偏移补偿及符号时序恢复。在前序时期中做完频率偏移补偿后,则可以平均同相及正交相讯号来估算出粗略载波相位。我们以计算机模拟,在加成性白高斯杂讯 (additive white Gaussian noise, AWGN) 通道中评估这个 GMSK 接收器架构的位元错误率 (bit error rate, BER) 效能。计算机模拟结果显示,当采用非同调解调变时,我们的接收器仅需12位元的训练前序,故适用于丛发型 (burst-mode) 数据通讯;当采用同调解调变时,此接收器亦可达较佳之 BER 效能。
接着,我们提出一种可用于欧洲Eureka 147数位广播系统中,共同完成符号、时框、及载波同步之方法。Eureka 147 采用OFDM调变。我们先让保护间隔 (guard interval) 中之讯号与有效讯号之最后四分之一讯号做复数相乘,符号时序可藉侦测此相乘值 (亦即相似讯息) 的相位角度的突变估计出。此突变之侦测是基于最大相似度 (maximal likelihood, ML) 法则。分数载波间隔 (fractional carrier spacing) 之频率偏移是在估出符号时序后,从上述相乘值之相位角度算出。粗略时框同步及虚符号之侦测可同样地藉该相似讯息估计出。整数载波间隔 (integral carrier spacing) 之频率偏移是藉接收到的相位参考符号与本地产生但已做频率移之相位参考符号做回旋 (convolution) 后决定出。我们发现保护间隔之长度是此同步演算法中最重要的参数。计算机模拟结果显示,这个同步方法之BER 效能在 AWGN 通道及两路瑞雷衰减 (two-path Rayleigh fading) 通道中趋近于理想同步。
In this dissertation, we investigate two different synchronization methods for digital mobile radio communications. The two methods are evaluated on systems that adopt Gaussian minimum shift keying (GMSK) modulation and Orthogonal Frequency Division Multiplexing (OFDM) modulation, respectively.
We first proposed a fully digital noncoherent and coherent GMSK receiver architecture with joint frequency offset compensation and symbol timing recovery. Carrier phase offset can be estimated when the coherent demodulation mode is adopted.
The down converted complex signal is first frequency discriminated and then passed through a digital filter that performs a Fast Fourier Transform (FFT). The frequency offset can be estimated from the DC component of the FFT and the symbol timing error can be estimated from the phase angle of the FFT at a specified frequency which is equal to an integral multiple of half the bit rate. These two estimated parameters are then used for frequency offset compensation and symbol timing recovery during a preamble period. Coarse carrier phase can be estimated by averaging sampled in-phase and quadrature-phase signals and finding its phase angle within the preamble period after carrier frequency offset is estimated and compensated. The BER performance of this GMSK receiver architecture is assessed for an AWGN channel by computer simulation. Simulation results show that our receiver requires only a 12 bits of training preamble in the noncoherent demodulation mode and its performance is suitable for burst-mode data communications. This receiver architecture can also achieve better BER performance with coherent detection.
Next, we presented a joint symbol, frame, and carrier synchronization method for the Eureka 147 digital audio broadcasting (DAB) signal that adopts OFDM modulation.
Symbol timing is determined first by detecting an abrupt change in the phase angle of the complex product between the last quarter of a useful symbol and its cyclic extension in the guard interval. The detection of this abrupt change is based on the maximal likelihood (ML) principle. Frequency offset of fractional carrier spacing is estimated from the phase angle of the autocorrelation after symbol timing is estimated. Coarse frame synchronization and null symbol detection can also be achieved through this correlation information. Frequency offset of integral carrier spacing is determined from the convolution outputs between a received phase reference symbol and several locally generated but frequency shifted phase reference symbols. We found the length of a guard interval is the most important parameter for the synchronization algorithm to work. Simulation results show that the performance of this synchronization method approaches to the ideal synchronization case in both an AWGN channel and a two-path Rayleigh fading channel.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870435100
http://hdl.handle.net/11536/64560
显示于类别:Thesis