Full metadata record
DC FieldValueLanguage
dc.contributor.author施逸文en_US
dc.contributor.authorYi-Wen Shihen_US
dc.contributor.author林松山en_US
dc.contributor.authorSong-Sun Linen_US
dc.date.accessioned2014-12-12T02:21:35Z-
dc.date.available2014-12-12T02:21:35Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870507002en_US
dc.identifier.urihttp://hdl.handle.net/11536/64845-
dc.description.abstract在第一部份, 考慮在圓柱體上半線性橢圓方程之解的對稱破壞, 令圓柱體長度為參數, 證明會產生對稱破壞在一群特定臨界值. 在第二部份, 考率慮非線性項為類線性之半線性橢圓方程, 解的存在性, 唯一性, 以及這些解的行為.zh_TW
dc.description.abstractIn part 1 we study the problem of symmetry-breaking of positive symmetric solutions of a semi-linear elliptic equation on finite cylinders with mixed type boundary conditions in two dimentions. Taking the length as a bifurcation parameter, we prove that there are asymmetric bifurcations at certain critical numbers, and obtain some global results. In part 2 we consider some semi-linear elliptic equations with asymptotic linear non-linearity and show the existence, uniqueness, and asymptotic behavior of these solutions.en_US
dc.language.isozh_TWen_US
dc.subject對稱破壞zh_TW
dc.subjectSymmetry-breakingen_US
dc.title半線性橢圓方程之解的存在性與多重性zh_TW
dc.titleExistence and Multiplicity of Solutions for Semi-linear Elliptic Equationsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis