標題: 相似於不可約的算子
Operators similar to irreducible ones
作者: 辛靜宜
Ching-I Hsin
吳培元
PeiYuan Wu
應用數學系所
關鍵字: 不可約算子;二次算子;冪算子;約當模型;擬正規算子;加權移位算子;C_0收縮算子;irreducible operator;quadratic operator;nilpotent operaror;Jordan form;quasinormal;weighted shift;C_0 contraction
公開日期: 1998
摘要: 本論文旨在探討在複希爾伯特空間上的算子,可相似於不可約算子之充份必要條件。 我們的成果如下: 在有限維的希爾伯特空間上,我們證明(1)可相似於不可約矩陣的 2x2 矩陣必不是純量矩陣;且反之亦然。(2)可相似於不可約矩陣的 nxn (n > 2) 矩陣 T 必不為 2 次矩陣,且對任意複數 a, T-aI 的秩不小 n/2;反之亦然。 在無窮維的希爾伯特空間上,針對加權(單側或雙側)移位算子或擬正規算子,我們有類似的結果。亦即,可相似於不可約算子的加權(單側或雙側)移位算子或擬正規算子 T 必不為2次算子,且對任意複數 a, T-aI 不為有限秩;反之亦然。此結果和有限維之矩陣,及正規算子(方資求, 蔣春瀾之研究結果)的情況吻合。 最後,我們針對C_0收縮算子加以探討。利用約當模型,得證可擬相似於不可約算子的C_0收縮算子T必不是2次算子,且對任意複數 a,T-aI 不為有限秩;反之亦然 。
In this thesis, we consider Hilbert space operators which are similar to irreducible ones. In the finite-dimentional case, we obtain the necessary and sufficient conditions for a complex square matrix $T$ to be similar to an irreducible one. We prove that (1) a $2\times 2$ matrix $T$ is similar to an irreducible matrix if and only if $T$ is not a scalar, and (2) an $n\times n$ ($n\geq 3$) matrix $T$ is similar to an irreducible matrix if and only if $T$ is not quadratic and rank $(T-\lambda I)\geq \dis\frac{n}{2}$ for any complex number $\lambda$. In the infinite-dimentional case, we prove an analogous result for weighted (unilateral or bilateral) shifts and quasinormal operators. Indeed, a weighted (unilateral or bilateral) shift or a quasinormal operator $T$ is similar to an irreducible operator if and only if $T$ is not quadratic and $T-\lambda I$ is not finite-rank for any complex number $\lambda$. It is obvious that the result is compatible with the ones in the finite-dimensional case and also with the work of C.K. Fong and C.L. Jiang on normal operators [8]. Finally, we consider $C_0$ contractions. Using the Jordan model of such operators, we prove that a $C_0$ contraction $T$ is quasisimilar to an irreducible operator if and only if $T$ is not quadratic and $T-\lambda I$ is not finite-rank for any complex number $\lambda$.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870507005
http://hdl.handle.net/11536/64849
顯示於類別:畢業論文