Full metadata record
DC FieldValueLanguage
dc.contributor.author班榮超en_US
dc.contributor.authorBan Jung-Chaoen_US
dc.contributor.author林松山en_US
dc.contributor.authorLin Song- Sunen_US
dc.date.accessioned2014-12-12T02:21:36Z-
dc.date.available2014-12-12T02:21:36Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870507015en_US
dc.identifier.urihttp://hdl.handle.net/11536/64860-
dc.description.abstract這篇論文主要的工作是在研究 細胞神經網絡 在Dirichlet,Neumann和Periodic三個邊界條件下的穩定解個數. 在1997年, Patrick Thiran教授曾研究過類似的問題, 他用組合學方法算了一些在1*3 template 下某些特殊情況下的 穩定解個數. 而在我們這篇論文中, 則以行進矩陣和邊界矩陣的方法算出 1*3 template 下所有的情況, 並且以同樣 的方法推廣至 1*(2n+1) template下所有 的情況.zh_TW
dc.description.abstractThis work investigates the global mosaic patterns and computes the number of stable equilibria associate to Dirichlet , Neumann and Periodic boundary conditions respectly in one dimensional Cellular Neural Network (CNN) , we will demonstrate a general method for calculating the number as above and show you how we generalized what Patrick.Thiran approached in 1997.en_US
dc.language.isoen_USen_US
dc.subject穩定解zh_TW
dc.subject行進矩陣zh_TW
dc.subject邊界矩陣zh_TW
dc.subject細胞神經網路zh_TW
dc.subjectStable Equilibriaen_US
dc.subjectTransition Matrixen_US
dc.subjectBoundary Matrixen_US
dc.subjectCellular Neural Networken_US
dc.title一維細胞神經網絡之穩定解個數研究zh_TW
dc.titleNumber of Stable Equilibria in One Dimensional Cellular Neural Networken_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis