完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 班榮超 | en_US |
dc.contributor.author | Ban Jung-Chao | en_US |
dc.contributor.author | 林松山 | en_US |
dc.contributor.author | Lin Song- Sun | en_US |
dc.date.accessioned | 2014-12-12T02:21:36Z | - |
dc.date.available | 2014-12-12T02:21:36Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870507015 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/64860 | - |
dc.description.abstract | 這篇論文主要的工作是在研究 細胞神經網絡 在Dirichlet,Neumann和Periodic三個邊界條件下的穩定解個數. 在1997年, Patrick Thiran教授曾研究過類似的問題, 他用組合學方法算了一些在1*3 template 下某些特殊情況下的 穩定解個數. 而在我們這篇論文中, 則以行進矩陣和邊界矩陣的方法算出 1*3 template 下所有的情況, 並且以同樣 的方法推廣至 1*(2n+1) template下所有 的情況. | zh_TW |
dc.description.abstract | This work investigates the global mosaic patterns and computes the number of stable equilibria associate to Dirichlet , Neumann and Periodic boundary conditions respectly in one dimensional Cellular Neural Network (CNN) , we will demonstrate a general method for calculating the number as above and show you how we generalized what Patrick.Thiran approached in 1997. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 穩定解 | zh_TW |
dc.subject | 行進矩陣 | zh_TW |
dc.subject | 邊界矩陣 | zh_TW |
dc.subject | 細胞神經網路 | zh_TW |
dc.subject | Stable Equilibria | en_US |
dc.subject | Transition Matrix | en_US |
dc.subject | Boundary Matrix | en_US |
dc.subject | Cellular Neural Network | en_US |
dc.title | 一維細胞神經網絡之穩定解個數研究 | zh_TW |
dc.title | Number of Stable Equilibria in One Dimensional Cellular Neural Network | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |