Title: Radon 測度上平度量的拓樸和切測度
Flat Metric Topology on Radon Measures And Tangent Measures
Authors: 張宏印
Hung-Yin Chang
王夏聲
Shiah-Sen Wang
應用數學系所
Keywords: 無;No
Issue Date: 1998
Abstract: 本論文中我們給了 中的Radon 測度上平度量拓樸的性質的一些較詳細的證明。然後根據 Preiss 的論文我們定義了不同於 Federer 和 Simon 文章中所提的切測度,並且證明任意Radon 測度之切測度的存在性和唯一性的等價表示法。
In this note we give some detailed proofs of the basic properties on the flat metric topology of Radon measures over . Also we give the definition of tangent measure, according to Preiss, which is differential form Federer[F] and Simon[S] and the uniqueness characterization on tangent measures of an arbitrary Radon measure in Theorem2.3.10.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870507021
http://hdl.handle.net/11536/64866
Appears in Collections:Thesis