Title: | N維歐氏空間上的均勻分布測度及其切測度 Uniformly Distributed Measures in R^n |
Authors: | 黃印良 Yihn-Liang Hwang 王夏聲 Shiah-Sen Wang 應用數學系所 |
Keywords: | 均勻分布測度;切測度;uniformly distributed measure;tangent measure;global Besicovitch property;tangent cone;Housdorff measure;d-cone;flat;symmetric k linear form |
Issue Date: | 1999 |
Abstract: | 這篇論文的重點是研究在R^n上的均勻分布測度以及其切測度的各種幾何性質,
並且儘可能地對這些性質給予仔細而嚴密的證明。這些性質可以用來證明下面的定理:
若 (\Phi) 為 R^n 上的非零測度, m 為小於或等於 n 的非負整數,
且滿足對於所有的 x\in\spt\Phi,和 r>0,皆有 \Phi(B(x,r))=\alpha(m)*r^m 。
如果 m=0,1,2,n,則 (\Phi) 必是支集在 R^n 中某 m 維子空間上的一個 m 維 Hausdorff 測度。
本文中大部份的結果,請參看 David Preiss 的"Geometry of Measures in R^n: Distribution,
Rectifiability, and Densities" (Ann. of Math. 125(1987), 537-643.)。 In this thesis we study the uniformly distributed measures in R^n . Some basic properties of these measures and their tangent cones are proved in details. We also give an application of these properties in the last section: Let $\Phi$ be a nonzero measure over $\brn$, and $m\le n$ be an integer so that $\Phi(B(x,r))=\alpha(m)*r^{m}$, for every $x\in\spt\Phi$ and every $r>0$. In case of $m=0,1,2,n$, there is an $m$ affine subspace $V$ of $\brn$ such that $\Phi=H^m| V$. Most of the results in this thesis may be found in David Preiss' paper ([P]). |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT880507010 http://hdl.handle.net/11536/66164 |
Appears in Collections: | Thesis |