Full metadata record
DC FieldValueLanguage
dc.contributor.author張宏印en_US
dc.contributor.authorHung-Yin Changen_US
dc.contributor.author王夏聲en_US
dc.contributor.authorShiah-Sen Wangen_US
dc.date.accessioned2014-12-12T02:21:37Z-
dc.date.available2014-12-12T02:21:37Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870507021en_US
dc.identifier.urihttp://hdl.handle.net/11536/64866-
dc.description.abstract本論文中我們給了 中的Radon 測度上平度量拓樸的性質的一些較詳細的證明。然後根據 Preiss 的論文我們定義了不同於 Federer 和 Simon 文章中所提的切測度,並且證明任意Radon 測度之切測度的存在性和唯一性的等價表示法。zh_TW
dc.description.abstractIn this note we give some detailed proofs of the basic properties on the flat metric topology of Radon measures over . Also we give the definition of tangent measure, according to Preiss, which is differential form Federer[F] and Simon[S] and the uniqueness characterization on tangent measures of an arbitrary Radon measure in Theorem2.3.10.en_US
dc.language.isozh_TWen_US
dc.subjectzh_TW
dc.subjectNoen_US
dc.titleRadon 測度上平度量的拓樸和切測度zh_TW
dc.titleFlat Metric Topology on Radon Measures And Tangent Measuresen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis