Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 張宏印 | en_US |
dc.contributor.author | Hung-Yin Chang | en_US |
dc.contributor.author | 王夏聲 | en_US |
dc.contributor.author | Shiah-Sen Wang | en_US |
dc.date.accessioned | 2014-12-12T02:21:37Z | - |
dc.date.available | 2014-12-12T02:21:37Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870507021 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/64866 | - |
dc.description.abstract | 本論文中我們給了 中的Radon 測度上平度量拓樸的性質的一些較詳細的證明。然後根據 Preiss 的論文我們定義了不同於 Federer 和 Simon 文章中所提的切測度,並且證明任意Radon 測度之切測度的存在性和唯一性的等價表示法。 | zh_TW |
dc.description.abstract | In this note we give some detailed proofs of the basic properties on the flat metric topology of Radon measures over . Also we give the definition of tangent measure, according to Preiss, which is differential form Federer[F] and Simon[S] and the uniqueness characterization on tangent measures of an arbitrary Radon measure in Theorem2.3.10. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 無 | zh_TW |
dc.subject | No | en_US |
dc.title | Radon 測度上平度量的拓樸和切測度 | zh_TW |
dc.title | Flat Metric Topology on Radon Measures And Tangent Measures | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |