標題: | Radon 測度上平度量的拓樸和切測度 Flat Metric Topology on Radon Measures And Tangent Measures |
作者: | 張宏印 Hung-Yin Chang 王夏聲 Shiah-Sen Wang 應用數學系所 |
關鍵字: | 無;No |
公開日期: | 1998 |
摘要: | 本論文中我們給了 中的Radon 測度上平度量拓樸的性質的一些較詳細的證明。然後根據 Preiss 的論文我們定義了不同於 Federer 和 Simon 文章中所提的切測度,並且證明任意Radon 測度之切測度的存在性和唯一性的等價表示法。 In this note we give some detailed proofs of the basic properties on the flat metric topology of Radon measures over . Also we give the definition of tangent measure, according to Preiss, which is differential form Federer[F] and Simon[S] and the uniqueness characterization on tangent measures of an arbitrary Radon measure in Theorem2.3.10. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT870507021 http://hdl.handle.net/11536/64866 |
Appears in Collections: | Thesis |